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INTRODUCTION

Finite difference methods are today one of the important tools for
approximating the solutions of time-dependent problems governed by systems of
partial differential, equations. This is ture for example for a wide spectrum
of pure initial value and mixed initial-boundary value problems in the field
of fluid-dynamics. The widespread use of finite difference schemes to solve such
problems has increased rapidly since the éarly 1950's, in reaponse to the
increased capabilities of the electronic computers which execute the vast amount
of calculations needed in the applications.

Since that time there have also been extensive developments in the analysis
of finite difference schemes. A prime example of this has been the maturation
of the mathematical theory needed to handle numerical approximations to linear
systems of initial value problems. The concept of stability of a difference
scheme, expressing a continuous dependence of the scheme-solution on its initial
values, plays a major role in the above mentioned theory. The centrality of
this concept follows from the Lax equivalence theorem (see for example [13,
Chapter 3] which assures the convergence of a numerical comﬁﬁtation carried out
by a stable finite difference scheme consistent with a well-posed initial velue
problem.

Besides the pure initial value problems mentioned above,we are most
interested in approximating the solution of mixed initial-boundary value problems,
vhere the numerical approximation must include a special boundary treatment to

fulfil the boundary conditions imposed on the problem. Furthermore, since




practically all the various schemes are solved in a finite domain of the grid,

it follows that numerical boundary conditions must be added also in the case of
pure initial value problems so that the solution can be uniquely determined. It
follows that in all cases (pure initial value and mixed initial-boundary value
problems), the overall approximation is composed of a basic scheme applied at
inner grid points and a (different) additional algorithm which is applied locally
at the boundary. The additional boundary treatment which determines uniquely

the scheme~solution is sometimes an artificial one and does not necessarily
reflect the boundary conditions (if any) of the original differential system,

so it may cause an instability. Indeed it is known (see for example [13, Chapter
6] [11, Chapter 17]) that even if the basic scheme is stable, a careless
numerical boundary treatment may render the total computation unstable.

These considerations lead us into the area of the stability analysis of
approximations to hyperbolic initial-boundary value problems. One of the most
important contributions in that area which will serve us as a general reference
on the subject, is the 1972 paper by Custafsson, Kreiss and Sundstrtm [6]
vhich is a generalization of an earlier paper by Kreiss (1968) [8]. The analysis
in the 1972 paper rests on a new stability definition (Definitions 3.2 and 3.3 in
[6]) which like the stability definition for approximations to pure initial
value problems, is obtained by a discretization of a corresponding well-posedness
condition of the original differential equation (see for example [9]). This new
stability condition reflects the influence that the boundary values have on the
numerical solution, and as in the case of pure initial value problems, it serves as

a sufficient condition for the convergence of a (compatible) consistent

v




approximation [5]. The main result of Gustafsson et. al,[6] provides an
algebraic criterion which enables one to determine whether a given approximation,
consisting of a basic scheme together with corresponding boundary conditions,

is stable or not. Roughly speaking, according to this criterion we have stability
if (and only if) no linear combination of powers of roots satisfying a
characteristic equation which is determined by the basic scheme, may serve as a
non-trivial solution of some characteristic boundary constraints. Thus, in order
to assure stability by applying the above stability criteria, one must first

study the behavior of roots of the corresponding characteristic equation. This
characteristic equation is a polynomial equation with N x N matrix coefficients,
N denoting the order of the original approximated system, and whose degree
depends on the number of spatial mesh points that the basic scheme rests on.
Studying the behavior of the roots of such an equation as part of applying the
above stability criteria for general difference schemes, is a complicated task
which cannot always be carried out fully analytically. Therefore, examples

given in the literature of verifying stability for initial-boundary approximations,
are in most cases restricted to specific scalar 3~point schemes.

This fact motivates us to look for simpler sufficient stability tests.
Scheme-independent stability tests which are exclusively dependent on the
boundary conditions, are particularly useful for such purpose. Tests of this
sort have two main advantages: first, their being independent of the basic
scheme relieves us of the technical difficulties associated with the computation
of roots of the characteristic equation and hence the procedure of checking

stability becomes much shorter; and secondly, the acquired stability is not
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restricted to a specific approximation but instead is valid for a family of basic
schemes which are characterized by some general property.

The search for such scheme-independent stability criteria for difference
approximations to hyperbolic initial-boundary value systems is the mein subject
of the dissertation.

As a model problem for the general linear_case we consider the hyperbolic
system u

t

conditions is well-posed in the quarter plane x 2 0, t 2 0. In prescribing

= Aux + F which together with appropriate initial and boundary

these appropriate boundary conditions it turns out that one must distinguish
between inflow and outflow (characteristic) unknowns, where the inflow boundary
values have to be determined by reflection of the outflow ones. Based on this
distinction we first introduce in Chapter 1 a general method of numerical boundary
treatment of arbitrary degree of accuracy, such that the entire vector
approximation is stable if and only if the scalar components of its outflow part
are; thus reducing the stability question to that of a scalar (outflow) problenm.
Therefore from that point on our discussion concentrates on the general scalar
approximation as it is represented in the second part of Chapter 1.

In Chapter 2 we begin the stability study, drawing on the stability theory
of Gustafsson et. al.[6] which we briefly survey in the first section of that
chapter. The main stability criterion in that theory is given in terms of
eigenvalues and generalized eigenvalues of the problem. Then, upon reintroducing
these concepts in a less formal manner and operating under the four basic
assumptions corresponding to those which were made in [6], we may apply the above

criterion [6, Theorem 5.1] which states that a given initial-boundary approximation




is stable if and only if it has neither eigenvalues nor generalized eigenvalues
outside the unit disc.

In the second section of Chapter 2 we follow the analysis in [6] which
leads to the formulation of the main stability criterion as a corresponding
determinant condition. Then, by using in the above analysis, a suitable
representation of the general form of (generalized) eigenvalues of the problem,
we derive an explicit interpretation of the determinantal stability criterion
mentioned above. This result, which seems to be of independent interest, is
essential for the general stability analysis which is carried out afterwards
and is needed to obtain the stability criteria of the desired type.

Chapter 3 -- the main one in this work -- discusses scheme-independent
stability criteria. The boundary conditions considered are of translatcry
type, i.e., determined at all points in the boundary domain by the same
procedure. We first show in Section 3.1 that when dealing with such boundary
condition, the determinental stability criterion obtained in Chapter 2 is
equivalent to & corresponding scalar condition., This scalar condition plays

the central role in proving the scheme-independent results at which we are aiming.

In the remainder of Chapter 3 we state our mein results, namely, sufficient |
scheme~independent stability criteria. These results are obtained upon making
two quite non-restrictive assumptions complementing the first four already made
in Chapter 2. It is shown that these new additional assumptions are necessary for
our scheme-independent results to be valid, and simple acheme-indépendent tests
verifying whether a given problem meets these assumptions, are provided. We study

the cases of both one-level and multi-level boundary treatments. In the (somewhat




simpler) first case, the well-known result (see for example {31, 7)) stating
that two-level stable dissipative schemes together with (one-leveled)
extrapolated outflow boundary values remain as conditionally stable, follows
easily. We show however, that this widely used result is no longer vealid when
dealing with multi-level dissipative schemes involving more than two time-steps,
unless further restrictions are made on them. In studying the wide class of
multi-level boundary treatments, we will employ the tools of dissipativity and
the von Neumann condition usually used only in connection with the basic scheme.
The stability criteria in the multi-level case are given in terms of these
, concepts which are well-understood from the theory of pure initial value problems
and;whose validity can be easily checked. We prove that an arbitrary stable
dissipative scheme when complemented by outflow boundary conditions satisfying
the von Neumann condition, remains stable. We alsc show that if the outflow
boundary conditions are dissipative, then the entire approximation is stable
independently of the interior scheme {be it dissipative or a non-dissipative one).
Finally, in Chapter UL, we utilize the above scheme-independent stability
criteria to verify the stability of various (outflow) translatory boundary
conditions. The examples considered indicate that an arbitrary stable dissipative
scheme whose outflow boundary values are translatorily computed by oblique
extrapolation, by the Box-Scheme or by the stable weighted Euler scheme, constitutes
a stable approximation. We also study boundary conditions which are generated

by the (right-sided) implicit and stable explicit Euler schemes. Both boundary

treatments are found to be unconditionally stable in the sense that when augmenting

arbitrary stable basic schemes, they always maintain stability. We close Chapter




L by considering approximations to the two space dimensional problem
u, = aux + buy in the quarter space x 20, t 2 0, —» <y < », The stability
aralysis in that case is based on Fourier transforming with respect to y

.with dual variable n), thus obtaining a one space dimensional problem of the

type analyzed in previous chapters with n-dependent coefficients.
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1. THE DIFFERENCE APPROXIMATION TO THE HYPERBOLIC SYSTEM

1.1. The reduction to the scalar problem

Consider a first order hyperbolic system of partial differential equations
(1.1a) dul(x,t)/at = Adu(x,t)/3x + F(x,t)
in the quarter-plane x 2 0, t 2 0, with initial conditions

(1.1v) u(x,0) = £(x) , 0 ¢ x <=,

(u(l)

Here, u(x,t) = (x,t);...,u(n)(x,t))' is the transposed vector of unknowns,

A is N x N non-singular constant coefficient matrix and

F Y (x8),. F M e, ) = (B, e M), are

F(x,t)
N-dimensional vector functions.
The hyperbolicity of the system (1l.la) implies that A can be diagonalized

by a similarity transformation, hence we may assume without restriction that A

is already given in its diagonal form

A a 0 0
(1.1c) A= ( +); A = ( 1., ) <o, A" = (aL*l . ) >0 .
! A 0 'aL 0] 'aN

We are interested in the uniqueness of the solution for the system (1l.la).

For that reason, let us consider the partition
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SV e ey,

u = ( , u cee sl
corresponding to that of A. Since the characteristic lines associated with the
N-L components of u+(x,t) go outside from the region x,t > 0, it follows that
u+(x,t) which is carried by these characteristics, is uniquely determined by the
initial values f(x) in the whole quarter-plane x,t 3 O. Because of the
direction of its characteristics, ¢ u*(x,t) is considered as the outgoing part of
the solution u(x,t).

The L characteristic lines associated with u (x,t) have a positive slope
and hence go into the quarter-plane x,t > 0. Therefore, in order that u (x,t),
which is considered as the ingoing part of the solution w(x,t), be uniquely
determined in the quarter-plane, it is necessary to specify its values on the

boundary line x = 0. Thus, for the solution of (1l.la) to be uniquely determined,

we prescribe boundary conditions Sf the general form
(1.1a) u(0,t) = Su'(0,t) + g(t) , t 3 O,

which determine the missing ingoing boundary values by reflection of the outgoing
ones. Here, S 1is an Lx(N-L) constant matrix and g(t) = (g(l)(t),...,g(L)(t))'
is an I-~dimensional vector function.

To solve the initial-boundary value problem (i.l) by a difference approximaticn

we introduce a mesh-size h = Ax > 0, &t > 0 such that A = At/Ax = constant.
Using the standard notation vv(t) z v(vh,t), we approximate (1.la) by a

consistent, two-sided multi-level 'scheme
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S
(1.2a) Q_lvv(t+At) = Zqovv(t-om) + AteF (t), v = 1,2,...,
o=0
with initial values
(1.2v) vv(oAt) = fv(oAt), v 2 Zr+l, 0 = 0,1,...,8.

Here

are difference operators with matrix coefficients depending on A and on 2.
In order to determine uniquely the solution of (1.2), we must specify at
each time step the r boundary values vu(t), uw=0,-1,...,-r+1, For the
approximated outgoing unknowns v:(t) H (v£L+l)(t),...,viN)(t))' we do it by
boundary conditions of the form
T

v+(t+At) = 2 S(u)v+(t-oAt) 4+ At*F (t) , u = 0,-1,...,-1r+l,
M U T v

(w)
5.1

(2.3)

S(u) = :ﬁt: C(H)EJ s 0= =1,0,1,...,7T , T2 -1,
o 1=0 Jo

(u)

where CJo are (N-L) x (N-L) constant matrices depending on A and on ).
In that way, we maintain the property shared by the analytic system (1.1), which
is the unique determination of the outgoing unknowns in the whole quarter-plane

independently of the ingoing ones.
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In (1.3), 7T+ 1 (t 2 -1) denotes the number of time levels needed for
the computation of vu(t+At). The case 1t = -1 1is considered to be the case
of one-level boundary conditions where the first term on the right side of (1.3)
is taken to be zero.

For the computation of the boundary values of the approximated ingoing

unknowns v;(t) = (vil)(L),...,viL)(t))' we use the analytic boundary condition
- +

{1.ka) - v (t) = sv.(t) + g(t),
0 0

together with r-1 additional conditions of the form

(1.bp) v;(t) = i Dqu;(t) + g (t) , W= 1,2, ol
J=-r+l

Here, DuJ are Lx(N-L) constant matrices and the gu(t) are L-dimensional
bounded vector functions depending on h and on g(t). Iﬂ other words, as in
the analytic case, the computation of the ingoing boundary values is based on
reflection of the outgoing ones.

It is well-known that using conditions of the general form (1.3), one can
achieve at the boundary, arbitrary degrees of accuracy. We note that this is
true also for conditions of the type (1.4b). Indeed, if accuracy of order d

is desired we can use the Taylor expansion of & smooth solution for (1.1)

4

3.9
W) = D LB 2 10,61 + dnd*),
J=0 * x
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and by the differential system (l1.la) and (1.1d) we get for a typical spatial

derivative in the above expansion

5 R IR 3
—%u (0,¢) = (a7) —334 (0,t) = (A7) [s—% uto,t) + -—c-la-g(t)) =
dx 3t t dat

- 3 ad J
(") s(ah) -—33u+(0,t) + —d—J—s(t)].
X dt

Thus, (1.4b) follows upon approximating 33/8x3u+(0,t) by linear combinations
of ujr+l(t),...,u;(t) of the right accuracy.

The difference spproximation is completely defined now by the (basic) scheme
{1.2a) together with the boundary conditions (1.3), (1.4) and we raise the
question of its overall stability which means, according to Definition 3.3 in
{61, that the discrete solution vv(t) could be estimated with the aid of the
inhomogeneous terms Fv(t), v 3 -r+¢l, g(t) and gu(t), U= =1,-2,...,-r+l.

For that purpose, we split the scheme (1.2a) into its inflow and outflow

parts s
(1.5) Q'_'lvv(ti-At) = :4;0-_ Q;v;(t-cAt) + At-F;(t), v=1,2,...,
8
+ + + +,. +
(1.6) Q_lvv(t-O-At) = :/s__oqcvv(t-am) + At-Fv(t), v=1,2,...,

which are coupled through the boundary conditions (1.4). Here, Q;, Q; are

difference operators which are given by

A"
- . -3 + :;i: L - Jo
% i Ay 0 S Ajof" 3 Ayo ( K )

J=-r J=-r Jo
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Thus, Q;, Q; denote respectively the partition of the difference operators
Qo into their inflow and outflow parts, according to the dependence of the matrix
coefficients Ajo on A and A'.

In order to assure the stability of the entire approximation, both of its
parts - the outflow part (1.6), (1.3) and the inflow part (1.5}, (1.4) - have to
be stable. We note that the outflow approximation (1.6), (1.3) is independent of
the inflow values, while the inflow approximation (1.5), (1.4 depends on the

outflow part only to the extent that the outflow computations provide the

inhomogeneous boundary values in (1.4b).

Let us consider first the stability of the self-contained outflow approximation

(1.6), (1.3). Since the difference operators Q+,

o Siu) are expressed in terms

+ +
of A and C u vhich in turn depend on the diagonal matrix A , it follows

(

Jo Jo
that the outflow problem splits into N-L independent scalar approximations.
Thus, the outflow problem is stable if and only if its N-IL scalar component
approximations are.

Row, suppose the outflow approximation was found stable, then it remains to
determine whether the same holds true for the inflow approximation (1.5), (1.4).
Since the outflo:- values determined by the stable outflow computation are bounded,
then the summation J;f;;lDqus(t), which appears on the right side of (1.lb) is a
bounded term, independent of the inflow computation. Thus, the right side of
(1.4b) consists of two bounded terms, which are independent of the inflow
computation and therefore; for the purpose of determining stability, it may be

considered as an arbitrary inhomogeneous term that provides the ingoing boundary

values.

.
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Recalling that the difference operators Q; defining the basic inflow

Jo
matrix A~, it follows that the inflow problem splits into L independent scalar

scheme are expressed in terms of A, , which in turn depend on the diagonal
initial-boundary approximations the boundary values of which are determined by
some inhomogeneous bounded terms. Thus, the inflow problem is stable if and
only if its L corresponding scalar components are.

Concerning the stability question of the initial-boundary approximation
vhich is discussed above, it is obviously necessary to require the stability of
its basic scheme should it be applied to the pure initial-value problem,

- <y € o

Assume that the basic inflow scheme indeed satisfies the above necessary
stability requirement. Then, as we shall see later on, it follows that each
scalar component of the inflow approximation whose boundary values are
determined by an arbitrary bounded term, is unconditionally stable, [7], [10],
and we therefore obtain the unconditional stability of the entire inflow part,
(1.5), (1.b).

Ve conclude.that the entire approximation is stable if and only if its
scalar components are. Furthermore, according to the remark sbove, it is
sufficient to consider only the outflow ones. Thus, in both cases - either
the inflow case or particularly the outflow one, it is the scalar approximation
the stability of which we have to look for, so hereafter we may restrict our
discussion to the scalar approximation, bearing in mind that our forthcoming

results go over to the general vector case.
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1.2 The scalar approximation and its solvability

Consider the scalar hyperbolic initial-boundary value problem
(1.7a) 3Ju(x,t)/3t = aduf{x,t)/3x; a = constant # 0; u(x,0) = £{x); x,t 2 0.

Whereas the outflow problem, a > 0, is well-posed in L2(0.w), the inflow problem,
a <0, is not, unless suitable boundary conditions are given at x = 0. Therefore,
we shall examine (1.7a) together with

- no boundary conditions for the outflow problem, a > O;
(1.7b)

- boundary conditions u(0,t) = g(t), t > 0 for the inflow problem, a < 0.

To aspproximate (1.7) numerically, we set a time step At > 0 and a mesh

width h = Ax > 0, a grid function vJ(t) s v{vh,t), v =0, #1, #2,..., and a
consistent multi-level finite difference scheme

Q_lvv(tﬂxt) = Zo Qovv(t—aAt); vel,2,,..,t 2 sAt
(1.8)

-g J . . e =
Qo = aJoE ;) 0 =-1,0,...,8; E Vo T Vesy
J=-r
Here, r,p > 0 and s are natural numbers and the aaa's are constants which
depend on the coefficient a and the fixed ratio ) = At/Ax = constant.

We note that the consistency of acheme (1.8), i.e., its being at least

|-
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first order accurate, may be characterized by the following two equations:

zero order accuracy requirement

SEPRD I

J=r =0 J==r 9

and the additional requirement for first order accuracy

IPNIED IO NI WD NP

Jz r o=0 J= -y o=0

The equalities (1.9a), (1.9b) may be written respectively, in the following

compact form

(1.108a) iaj(z)|z=l = 0,

y=-r

£
(1.100) 2"‘ Jad(z)lzﬂ = -ha i“i(”!m 0012 dl:dz} ’

= ==t

where the scalar functions sa(z) are defined by
8

-g=-1
(1.11) ad(z) --%g;; “J,o + “J,-l s ~r £J<p,

and following [6], [8), we shall operste under
ASSUMPTION I (Assumption 5.5 in [61).

a_.(2), ap(z) $0, [z] 31.
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It is clear that under Assumption I, the vector coefficients,

(a »a )' does not vanish, and since r > 0 it follows that in

a .o
-r,-1° -r,0’ -r,s

order to assure the uniqueness of the solution of (1.8), we have to supply its
discrete values at the doundary points xu, u=0, =1,...,~-r+1l. These will be

defined via boundary conditions of the form

1
S(:)V (t+At) = Zs(u)v (t-(’At); u = 0,-1,..,,-—1‘*’1, t 2 TAt,
-t o=0 ¢ ¥
(1.12a)
glw) _ CH

3y 0= <1,0,...,7, T 2 -1.
o 320 Jo

(u),
Jo

number and <t+l, t 2 -1, indicates the number of previous time levels which we

Here, the ¢ s are constants which depend on a and A, q is a natural

need in order to compute the boundary values at the next time level, t+At. We
note that the one-level boundary conditions namely 1 = -1, is a special case of

{1.12a) whereupon (1.12a) +tekes the form

(1.12p) sfz':)vu(wst) =0, u=O0,-1,...,-T+], t 3 O.

It is clear that the computation of the boundary values via the r boundary

relations (1.12), the linear independence of which is assured by taking

(1.13) cf)‘:_l £0 , u=0,-1,...,-r+l,

is done in the specified order, namely, u = 0,-1,...,~r+l.

Now, the basic scheme (1.8) together with the boundary conditions (1.12)

47' AT T v =




47‘ AT [T AT ——y —
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completely define the finite difference approximation, whose numerical solution

is initiated with the aid of the initial values given by
(1.1%) vv(aAt) = fv(aAt) , V2 ~r+l, o =0,1,...,5.

Following [6], we define the solvability of the difference approximation as

the property of being able to uniquely obtain bounded grid values at t+At by

applying (1.8) and (1.12), thus making use of the discrete values which were
already computed at previous time levels.

To ensure solvability, we consider the space 22(x), of all the grid

L J
functions w = {w-‘@ satisfying E ’w [2 < o, Upon defining respectively
V.ys-r+] v+l \Y

an inner product and a norm by

«

\ - 2
(vyw)y = Bxe/  vv, o, fwi = (w,w) s
VE-r+l

22(x) becomes a Hilbert space, a discrete analogue to L2(0,~). Now, denote by
Wy Vo2 -r+l, the discrete values to be computed at the next time level, t+At

and rewrite the approximation (1.8), (1.12) in the form

(1.15) Q v, =¥, V=12, sS;)wu =¥, b= 0,-l,u.,mrt,

vhere ¥ = {Yv}:; L 3 le(x), stands for the linear combinations of previously

r+l

~ ——-




- 19 -

computed values, as given on the right sides of (1.8) and (1.12).

The solvability of the approximation, which will be henceforth assumed
throughout this work, is thus cast in the following form.
ASSUMPTION 11 (Assumption 3.1 in [6] ).

There exists a constant Ko > 0, such that for every V¥ € 12(x) there is a
unique solution w € le(x) for (1.15) with

n

2
pwi

2 2
x § KO.WI x’

We note that the solvability condition is automatically fulfilled in case
that the basic scheme (1.8) is explicit, i.e., Q-l £ constant-I. Concerning
the solvability in the general implicit case, the following result due to Osher
[12] (vased on Strang's earlier paper [16]) holds.

LEMMA 1.1.

Let the index ro, Osrosr be defipned by

(1.16) ry = ma,:uz{‘jla_"’_1 $0,0s¢) sr}

and let Ky J=1,2,...,m be the m roots counted according to their

multiplicities, of

(1.17) Q_y(x) = i aJ,—l"J =0,

J"ro

which are lying inside the unit disc 0 < |<J| <1,

| S—

L
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I. (Theorem I in [12]). The following three conditions are necessary and

sufficient for solvability:

(2.18a) Q_l(eiE) #0, gl s

{(1.18v) m=r

(1.18¢) the associated problem with (1.15) which consists of the basic scheme

J=-r

(1.19a) Q—lwv = :gi: aj,-lwv+j =0, v=1,2,...,
0

together with the inhomogeneous boundary conditions

(1.19b) sty o ¥, u = 0,m1,..,mr,

-1l u

has a unique solution in Ee(x).

II. Let the basic scheme (1.19a) be a right-sided ome,i.e., ry ® 0. Then

(1.20) Q_l(K) #0,0<]|cl g2

is a sufficient condition for solvability.

In particular solvability follows for explicit basic schemes, where

we have r, =0, Q_l(K) = constant.
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PROOF. By (1.18a) we may apply the Argument Principle for Q_l(r) on the

unit circle [k| = 1, obtaining that (1.18b) is valid if and only if
L

(2ﬂ)-l.J d[argQ_l(elg)] = 0. Hence, conditions (1.18) are exactly those of
-7

Osher ((d) (e) and (g) in [12]) and by Theorem I in [12] they are equivalent
to solvability.

To prove the second part of the lemma we first note that (1.20) implies
(1.18a). Also (1.20) implies that Q_l(x) = 0 has no solutions inside the
unit disc, i.e., m = 0, and since ry = 0 we have (1.18b) as well. Finally
since by (1.20) Q_l(x) = 0 has no solutions in the closed unit disc, it
follows that the most general solution of (1.19a) in lz(x) must vanish, i.e.,
v, = 0, v=1,2,... . In addition the boundary values wu, W= 0,-1,...,~r+l,
can be uniquely computed by applying (1.19b) in the successive order
p=0,-1,...,-r+1, so we get (1.18c). Having (1.18a), (1.18b), (1.18¢c), part

I of the lemma completes the proof.




2. STABILITY ANALYSIS

2.1. The stability definition and Gustafsson's et. al. Main Theorem (6]

In a similar way to the above definition of the space ie(x), we introduce
the discrete spaces 22(t) and Zg(x,t), which become Hilbert spaces upon

defining respectively an inner product and a norm by
o

(v,w)t = At-:i: v(oAt)w(ost) ; Ewﬂ: = {w,w)
0=0

- 2
= . . . ’! | = \
(v,w) t At-Ax § E vv(oAt)wv(cAt), Twl N (w,v;

0=0 vs-r+l ’

Now, let us write the difference approximation (1.8), (1.12), in the

operational form max(1,s)
(2.1) G_lv(t+At) = 2 ch(t-oAt); v(t-oAt)€22(x),
o=0

where Gozzz(x) — ze(x) are linear bounded operators determined by the basic
scheme (1.8) together with the boundary conditions (1.12)., Here, the solvability

assumption II, is expressed by the fact that G, has a bounded inverse in the

1
whole of lz(x).

DEFINITION 2.1 (Definition 3.3 in [6]).

Consider the inhomogeneous approximation associated with (2.1)

max(t,s)

L
(2.2) G_ wit+at) - — Gw(t-ost) = 8t-F F = (F} __ ., €1,(x),

together with vanishing initial values fv(oAt) = 0, The approximation (1.8),

PR

" L A ~v ~ - -




- 23 -

(1.12) is said to be stable if there exist constants K. > 0 and a, 2 O,

0 0
such that for every FEle(x) and every a, a 2 s the solution w = {wv}v=—r+l’
of (2.2) satisfies the estimate
a-o 0 a-a 2 2

>0 E -at 12 0 " —at

(2. ( )- e + ( ) + le <
¥ At/ it ™ B+ (mem)
a-a, 0
_ N E alt+at)y 12 1 -a(t+at’ 2
€ ﬁrAt+l) At e :t tre F X,t

H=-

It is of course understood that before turning to investigate the stability
~% the initial-boundary approximation (2.1), one has to assure first the stability
5f gcheme (1.8) should it be applied to the pure initial-value problem, -®<x<e,
ASSUMPTION III (Assumption 5.1 in [6]).

The scheme (1.8) is a stable approximation for the Cauchy problem, -w<v<w,

It is well-known (see for example [13, Section 4]) that Assumption III,
may be characterized by the two following conditions:

(i) The von Neumann condition; namely, the z-solutions for the eigenvalue

problem

8
(2.48) q_,(18) - > 207l (16) = 0, Qi) = 2 e, M,

- —~ Jo

o=0 J=-r

which may be rewritten in the equivalent form

> >

1€ _ o, 2D ,~0-1

(2.4b) ad(z)e 03 aa(z) z 840 + 8, 19

J=-r o=0

-, TP IRANIISAL o g™ -~ WP T T Ty ey - o
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satisfy |z = 2(§)] £ 1 for |g| s w

(ii) The solutions for the eigenvalue problem (2.k4) which are lying on the

unit circle, are simple, i.e., for 2y = zo(Eo), Izol = 1, satisfying (2.4},
we have
ijg
(2.5) _g__aj'(z)e ®lgmp # 0, LT -]
J=-r 0

In addition we require
ASSUMPTION IV (Assumption 5,4 in [6]).
Denote by zJ(E) the solutions fcr (2.4). Then, the scheme (1.8) is

either dissipative, i.e.,

lz,(e)l <1, o< ] <,
or, it is nondissipative, i.e.,
IzJ(E;)! =1 , 0¢ |g] ¢,

Operating with our scalar approximation under Assumptions I-IV, enables us
to use the results obtained by Gustafsson et. al,[6]; in particular, we are
interested in their main result, characterizing the stability of an initial-
boundary approximation. The remainder of this section is therefore devoted to
a brief survey of some of the points concerning this matter.

Consider the z-eigenvalue problem -- the associated resolvent cequation --
given by

(2.6) G(z)e = 0, G(z)

"W
(2]
)
Q
-

N —v =
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which follows upon substituting a grid solution of the form vv(t) = zt'/At

§v,vz-r+l,
into the approximation (2.1).

DEFINITION 2.2.

A complex number 24» is said to be a spectrum-point of the approximation
with associated eigenvector ¢, ¢ # 0, if there exists a sequence of vectbrs

¢(J),J=1,2,.~e,§(3) € 2,(x), satisfying
(2.7) alzgleld) L, o o00) L0, o0y o

We note that the eigenvector ¢, associated with the spectrum point zo, is

not necessarily in £,(x). In case the vector ¢ 1is indeed in lz(x), the point

2
z, is an eigenvalue of the approximation; otherwise, when ¢ ¢ zz(x), zO is a
generalized eigenvalue of the approximation. 1In either case, the boundedness of

the operator G(zo) implies that the corresponding eigenvector ¢ satisfies
(2.8) G(zo)O = 0.

It is not hard to see that in order to assure the stability of the difference
approximation, we have to assure first that the necessary condition of Ryabenkii-
Goudunov is to be fulfilled, namely, that the approximation has no eigenvalues z
with |z > 1 (Lemma .1 4in [6]). Indeed, the existence of such an eigenvalue
20 lzol > 1, with associated eigenvector ¢, ¢ € £,(x), implies that the grid
function

g/At s V 2 -r+l,

(2.9) Vv(t) =z v
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is a sclution for the approximation (1.8), (1.12), with initial values

o]

vv(cAt) = zq

¢v’ v 2 ~r+l, o = 0,1,...,8, a solution which exponentially diverges
with the refinement of the grid as At —> 0. Evidently, such a divergence
cannot be allowed within the limits of any stability definition and in particular
definition 2.1, (Theorem 3.1 in [6]).

The main result in [6] strengthens the necessary condition mentioned

above to be also sufficient.

THEOREM 2.1. (Theorem 5.1 in [6]).

neither eigenvalues nor generalized eigenvalues =z, with |z| 2 1.
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2.2. A determinantal stability condition

In this section, we intend to express the stability condition which was given
in Theorem 2.1, in a suitable algebraic formulation.
For that purpose, we consider the characteristic equation, associated with the

basic scheme (1.8),

{2.10) P(z,x) = Ei: a.J(z)ncJ =0,

J=r

whose r+p roots Ky counted according to their multiplicities, are continuous

functions of z.

The behavior of these 2z-dependent solutions, plays a central role in
determining the set of the spectrum points of approximation (1.8), (1.12).
The following lemma summarizes the results which were given in [ ] and [g ]
concerning those solutions, for any solvable approximation.
LEMMA 2.1.

Consider the solvable approximation (1.8), (1.12).

I. (Lemma 5.2 in [6]). When scheme (1.8) satisfies the von Neumann condition,

then the r + p solutions of its associated characteristic equation (2.10)

are split for |z| > 1:

R vith |c (z)] > 1, and the rest r solutions with 0 < |xi(z)| < 1.

II. (Lemma 2 in [8]). When scheme (1.8) is of dissipative type and it

additionally satisfies

(2.11) i:ad(z-ew) #0, 0c<lol 7,

o=

then the above splitting property is maintained for |z| 21, z # 1.




- 28 -

PROOF  The proof of both parts of the theorem is based on the idea of identifying
the z-values for which the characteristic equation (2.10) has no x-solutions on
the unit circle, i.e,, « = eig, 05 |g] .

We first note, that the solutions Ki(z), |z] 21 of (2.10), are exactly

those which solve

(2.12) kT eP(z,k) = g aJ(z)KJ+r = 0;
J=-r
indeed, multiplying the characteristic equation (2.10) by the factor T as in
(2.12), does not yield additional zero solutions, x = 0, since by
Assumption I,

Kr~P(z,<)|K=0 = a_r(z) #0, Jlz| 2 1.

Now, concerning the first case, the von Neumann condition implies that the
characteristic equation (2.12) has no x-solutions on the unit circle for all

z-values with |z| > 1, since by (2.4b) we have for |z| > 1

(2.13) eirE-P(z,x=eiE) z :;i: a"(z)e:l'(“]ﬂ')E $#0, 0c¢ |g] <.
J=-r
Concerning the second dissipative case, a slight change is needed in Kreiss'
original proof (8, Lemma 2] in order that the splitting property will be valid
for our mulit-level scheme (1.8).
In this case, the dissipativity property, which indicates that the solutions

z(€)£2(<-ei£) of (2.12) satisfy

(2.1k) l2¢g)) <1 ,0<|g| <+,

. ,r' T ——er e - Cm—
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implies that for |z| 2 1, we have
(2.15) eir€~P(z,x=ei£) = :ii: a.J(z)ei(‘ﬁr)E #0,0<|g| .

It therefore remains to check the single point § = O.

By continuity considerations, it follows from (2.1k) that
(2.16) |z(g=0)| < 1.

We recall our hypothesis (2.11), which implies that the solutions
z = z(g) of (2.12) for «k = e15|£=0 satisfy

(2.17) 2(620) # e*® , 0 < |o| €7 .
Thus, by (2.16), (2.17), we obtain for |z| 2 1, 2 #1

(2.18) e TEp(z xme'®) o 2 i: a,(z) # 0.
J=-r
Combining (2.15) and (2.18) yields that (2.13) dis valid in the second
case, for all the z-values satisfying [z| 31, z # 1.
Now, the solutions, Ki(z), for (2.12), are continuous functions of z.
Therefore, the number of solutions «, satisfying O < Ixi(z)l <1, is
independent of z, as long as |z| > 1 in the first case, and |z] 21, z#1,

in the second one. By letting z tend to infinity, [s| —> @ , it follovs

o
"
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thet this number is equal to the number of solutions «k inside the unit disc of

(2.19) R(la] > o) 2T () 2 2 _ay e 0.

In order to find how the solutions of (2.19) are split we denote, as in

(1.16), by 0<rysr, themaximal index for which a__ # 0, and

ros “Tga-

rewrite (2.19) 1in the form

r-r J+r
0, 0
K i aJ,—IK = 0,

J='ro

Then, the number of solutions «, 0 g |k| <1 of (2.19), consists of r-r,
zero solutions, «x = 0, and, by Lemma 1.1 which is valid under our solvability

additional solutions of

i a.J’__lv:J = 0.
0

J=-r

assumption, To

Hence, there exist r solutions inside the unit disc, and p outside it, and
the result follows.

REMARK 2.1. We note that in the course of proving Lemma 2.1, we didn't need
Assumption I, except to assure that multiplying the characteristic equation
(2.10) by the factor F , as given in (2.12), does not yield additional zero
solutions, x = 0.

REMARK 2.2. To assure the splitting property for |z| 3 1, z# 1 in the

dissipative case, then according to the second part of the above lemma,
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condition (2 1) has to hold. We note that this condition is actually part of

the splitting property since violation of (2.11) means that for some

@g» 0 <« lwol ¢ m, we have

P(z=e1¢0,<=1) = g a (z=eiw0) = 0;
J=-r
that is, if (2.11) is violated then for some 2z with lzl =1,z #1,
the characteristic equation (2.10) has a root (k=1l) on the unit circle.
Moreover, condition (2.11) 1is generally necessary in the sense that it is

independent of dissipativity. Indeed, let

vv(t+A’c) = S aJ’ovv(t) , v =1,2,...,
J=-r
be any two-level dissipative scheme which is (at least) zero order accurate,

i.e., by (1.10a) we have

(2.21) i a.J(ztl) =1 -i 8 0 =0

J--r Ja-r

Now, let s be a positive integer and consider the solvable scheme

(2.22) vv(t+At) = J.i_:d'ov"(t-s“) sV =1.2,..., .

This scheme is dissipative yet (2.11) 4s violated since by (2.21) we have

for z = uJ, w, = e2'13/('+1), J=1,2,...,8

J
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-(s+1) ‘5L- _ -

l-2 A - =1 - a = 0.
) e =

(2.23) J=—raJ(z)'z=w
The last example (2.22), which shows the necessity of the additional condition

(2.11), is of course a degenerated one. When we turn to examine either the two-

level or the three-lev2l schemes, i.e., s =0 or s =1, which are apparently

the ones used most often, we find that the additional condition (2.11), may be

omitted, or, at least may be weakened. This ic the content of the next lemma,

LEMMA 2.2.

Let the scheme (1.8) be accurate of (at least) order zero (that is, even

the consistency, (1.10), is not necessarily required).

I. For two-level scheme, s = 0, we have

(2.2k) iaj(z=em) #0,0c¢< Jo| g

1S o

II. For three-level scheme, s = 1, which satisfies

(2.25) iu‘,(znl) #0,

=

(2.24) still holds.
Thus, the additional condition (2.11) is automatically fulfilled in the
two-level case, and has to be verified at the single point 2z = -1 in the three-

level one.

PROOF. When scheme (1.8) is of (at least) zero order accuracy, (1.10a) implies

—
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(2.26) P(z=1,k=1) = ji: a,(z=1) = 0.

= J

Now, in the two-leveied case, the characteristic function
(2.27) P(z,k=1) = Q_l(nc=l) -z

is a polynomial of tirst degree in the argument z_l, and, by (2.26), its only

root is z %' = 1; hence

g
—_—
5]
[
(1
[ S
6
-
x
(]
'—J
~
m

iad(z=eiw) #0 » 0 < Iw‘ £ m,

J=-r

thus, (2.24) holds.

In the three-leveled case, the characteristic function

(2.28) P(z,x=1)

Q_, (k=1)-z75Q (k=1) - 273q (x=1)

is a polynomial of second degree in the argument z_l. vhose coefficients are
real, and by (2.26), z"1 = 1, is one of its two roots. Hence, the other root

of (2.28) 1is real, and therefore

(2.29) P(z=ei¢,x=1) = iad(ﬁem’) #0,0< (o <n.

J=-r

Now, combining (2.29) with our hypothesis (2.25) which merely asserts

that (2.29) 1is valid also for [®| = =, gives the desired result.




DU~ >

_314._

We return now to the characteristic equation (2.10), the solutions of
which were discussed in the Lemma 2.1.
Denote by K, = xz(z), the distinct, z-dependent solutions of the characteristic

equation (2.10), each with corresponding multiplicity m, = ml(z). Since our

2
basic scheme (1.8) is always assumed to satisfy the von Neumann condition
(Assumption III), then by the splitting property stated in Lemma 2.1, we may

distinguish between two groups of solutions of (2.10):

the group of the inner solutions, xz(z), lg¢fsn, which are characterized by
0 < Izl(z)| <1 , Jz| »1;

and the group of the outer solutions, containing the rest of the solutions, and
characterized by

|K£(Z)| >1, |z] »1.

Note that by continuity, the inner (outer) solutions are well-defined for lzl 21,

where the milder inequalities lxll <1 (lel 2 1) are valid.

Now, let 2z with |z| 21 be.given. If 2z is an eigenvalue or a
generalized eigenvalue of the approximation, then there exists a corresponding
(nontrivial) eigenvector ¢ such that G(z)® = 0; thus by the definition of
G(z) in (2.6), ¢ must first satisfy the basic scheme associated with the

resolvent equation s

(2.30) (Q, - Z z'°'1Q°)§v =0, v=1,2,3,... .
o=0

WAL (T T T T o
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Equation (2.30) 1is an ordinary difference equation with constant coefficients;

hence, the most general form of an eigenvector ¢ satisfying (2.30) is given by

m -
n 2
~ < v
(2.31) ¢ = » g, P (v)k, , v 2 -r+l
v 4—k=0 L,k 2,k 2
Here, Ky = Kl(z), are the distinct inner solutions of the characteristic equation
(2.10) each with corresponding multiplicity m, = m (z);. P, (v) are arbitrary

L L L,k

polynomiels in v with deg[P2 k(v)] = k; and o are free parameters tc be
9’

2,k

determined, where by Lemma 2.1, their precise number is

REMARK 2.3. We note that the splitting property mentioned in Lemma 2.1, implies
that for Izl > ., the inner solutions, Kz(z), satisff ihe strict inequality
|<2(z)l < 1, hence, the eigenvector ¢ given in (2.31) is in Ez(x). Thus ,
the existence of a generalized eigenvalue 2z, is possible only for 2z 1lying on
the unit circle, |z| = 1. Furthermore, operating under hypothesis (2.11), this
possibility is reduced in the dissipative case, to the single point, z = 1, since
.

the splitting property in this case is maintained also for lzl =1, z # 1.

We now make a particular choice of the polynomials Pl’k(v) in (2.31),
vhich later proved useful. We choose

Py (V) = F k()

so that the most general solution of (2.30) which is used as eigenvector of the

epproximation, is of the form

W77 o AT v




(2.32) $ = o, ki

To determine the parameters 9

G, ¢ must also satisfy the boundary conditions

x* Ve recall that being an eigenvector of
?

(2.33) (G(z)§) =0, u=0,=1,...,-r+l,

The operator G(z) is defined with the aid of the operators Ga’ wvhose operation

at the boundary points is given by (1.12); hence {(2.33) becomes

T
(2.34) (s W > ol sé“’mu =0, 5= 0,-1,...,-r+L.

Inserting (2.32) in (2.34), we finally obtain

n 2 1
(2.35) y—i [c(uil - Z 2 lcSL‘)]k*( « )‘:+J k"t,k =0

2=1 k=0 J=0 ’ 0=0

u=0,-1,...,-r+l,

which constitutes a linear homogeneous system of r equations in the r

unknowns o k' Clearly, ¢ is an eigenvector of the approximation, if and only
»
if not all the o, in (2.35) vanish, that is, (2.35) has a nontrivial
1]
solution.

At this point, we associate with the boundary conditions (1.12) a set of

rational boundary-functions

I S T v
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— &
(z.36) R (z,x) = Al_[C‘U) -/ z-o-Jc(“)]xu+J, b= 0,-1,...,-r+1,
u = Ja'l - ,jd
J=0 o=0
which are uniquely determined by the boundary coefficients C;s) Upon defining
the scalar functions
.
(2.37a) (“)( ) = \- clu) it s 0= =) ,0,...,T
550 9
the associated boundary-functions may be rewritten as
T
(2.37b) R (2z,k) = sii)(x) - E 2771 sé“)(x). W= 0,-1,...,-r+l.
H o=0
Since
q T
+J
3R {z,k) \u) 5 -0-1 (u) (u )u*d—k
— ' 22l Z [c - z e k! I3 R
kK -1 o=0 Jo k
the system (2.35) is cast in the form
l
(2.38) 5 3 R —?4-‘51 Gy ) = 0 B = 0,1 ... -rl,
L=1 k=0 an '

It follows that the coefficient matrix of this system, which we denote by

{2.39a) D= D(Z;Kl""’ﬁn;ml""’mn)

is of the form
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D = [B(Z,Kl,ml), B(z,ng,me),...,B(z,:n,mn)],

where B(z,xl,m )y 1 £ 2 ¢ n are rxm dimensional blocks given by

|3 L
(2.39c)
i~ = — - p— R
Rylz,x) Rqy(2,x) Ro(z.r)
R_,(z,x) R_,(z,x) R_,(z,x)
. . m -1 :
. ) . 3 L :
B(Z’Kl’ml) = ja—K" ey T ) ,1€8¢ n
L
x
R_r+l(z,n) R_r+l(z,r) Lf_r+ (z,x)
- - — - A ’K=Kl

We recall that ¢ 1is an eigenvector of the approximation if and only if (2.38)
has & nontrivial solution, i.e., if D 1s singular. This gives us

LEMMA 2.3.

Let z with |z| 3 1 be given, and let k, = x,(2), 1 €2 ¢n, be the

corresponding distinet inner solutions of the characteristic equation (2.10),

each with multiplicity m, = mz(z).

Then 2z 4is an eigenvalue or a generalized eigenvalue of the approximation if and

only if

det[D(z;nl,...,xn;ml,...,mn)] = 0.

By Theorem 2.1, the stability of the approximation is assured if and only if it

has no eigenvalues nor generalized eigenvalues z with |z| 3 1; so by applying

Ll R Aid -
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Lemma 2.3 we finally obtain an algebraic formulation of the stability condition
of the type which we look for.
THEOREM 2.2.

The difference approximation (1.8), (1.12) of the initial-boundary value

problem (1.7) is stable, if and only if for every z |z| 2 1, with distinct inner

solutions « 1l s 2 s n, each with multiplicity m

g2’ 2

det[D(z;xl,...,Kn;ml,...,mn)] ¥ 0.

Theorem 2.2 1is simplified when the boundary conditions are of one-level type,

{see (1.12b)), i.e.,

(u)

(2.40) s,

vu(t+At) =0, p=0,-1,...,-r+l.

In this case the associated boundary-functions (2.37) are

. <lu) - ( ) +J
R (k) =8 (k) = z%:ic LY
i) -1 X 4=0 Ja-1

and the matrix coefficient D 1in (2.39) is given by
(2.41a) D= D(Kl,...,xn;ml,...,mn) z [B(xl,ml),...,B(Kn,mn))

with

- ““-—""Lv‘m"v_’—' N7




- 40 -
(2.41p, R —_ — —_ — -
Ry(x) Ro(x) RO(K)
R_l(K) _l(K) b1 R_l(K)
. d d L
B(Kl’ml) = : "I oo T ,1¢<t& ¢n.
L
dxk
R (x) (x) R (x)
i -r+l &-r'ﬁl | :I‘*l 4]
|K=K£

The matrix D in (2.41) no longer depends explicitly on z, but via the inner

solutions = xz(z) and their multiplicities m, = ml(z), hence Theorem 2,2

e L

becomes

COROLLARY 2.1.

The difference approximation (1.8), (1.12b) is stable, if and only if for

—— ————— | — ——— a—— — —

every 2, z] 2 1 with distinct inner solutions Kgs 1l <2 ¢<n, each with

multiplicity ml
det[D(xl,...,:n; ml,...,mn)] # 0.

'@" ; .
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3. SCHEME-~INDEPENDENT STABILITY CRITERIA

3.1. Translatory boundary conditions — ihe determinant condition

In the previous chapters, we dealt with boundary conditions of the general
form (1.12), where each boundary value, vu(t+At), is determined by a linear
combination of computed grid values which is dependent on the position of the
boundary value to be computed.

In this chapter we start discussing translatory boundary conditions; that is,
the same linear combination is used to compute the boundary values
vu(t+At), u=0,-1,...,-r+l, independently of their position. In other words,
the translatory case is characterized by applying a repeated procedure, where
the computation is done by translating the same linear combination in the usual
specified order, namely, u = 0,-1l,...,-r+l. The translatory boundary conditions

are thus cast in the form

T
s_lvu(tﬂst) = _2. Sovu(t-oAt), e 0,-1l,...,~r+1, t 2 1At
o=0

(3'1) Sl
= J B -
S E cJ B, o0 1,040..,1

vhere the coefficients cJo are no longer dependent on u.

Ve note that when the discrete boundary domain is reduced to the single point
Xgs suci as in the case of the widely used 3-point schemes (i.e., r = p = 1), the
computation at the boundary is of translatory type by definitionm.

Hereafter, we concentrate on searching for conditions assuring stability in
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the translatory case.

The rational boundary-functions associated with (3.1) are
9
(3.2a) R (z,k) = E c (z)e"* = 0,-1,...,-r+l,
J=0

where the scalar functions cJ(z) are given by
1

- ~0-1
(3.2v) , cJ(z) = - :E:: z Cyq + y.1 0<J <aq.

o=0

In particular, for u =0 we get

q T
(3.3a) Ry(z,k) = :E:: cJ(z)KJ =5 _ (k) - :E:: —o-ls (),
=0
3= °

where the scalar functions SO(K), are given by

q
(3.30) S06) = 9 eyl Lm0,

J=0
By (3.2a) and (3.3a), we have
Rv(z,x) = quo(z,K) s U= 0,=1,...,-r+l,

so the r x r matrix

D= D(z,xl,...,xn;ml,...,mn) z [B(z,gpml),.."B(z.xn.mn)]
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of (2.39) is given by the rxm, dimensional blocks

—_ —_ 1
Ro(z,K) [;;(z,n) (;;(z,x)
-1 -1 -1
K Ro(z,x) K Ro(z,x) mz-l K Ro(z,x)
. 3 : )
B(Z’Klaml) = . vy . EREE Iy ,1ghgn,
2
K
K—r+lRO(Z,K) K-r+lRo(z,<) K-r+1RO(Z,K)
— JL—~ a—— fe i1 IK=K1

The fact that D is determined now by the single boundary-function Ro(z,x)

enables us to significantly simplify the stability condition given in Theorem

2.2 by replacing its determinantal criterion with the following scalar condition.

THEOREM 3.1.

The difference approximation (1.8), (3.1) of the initial-boundary value

problem (1.7) is stable, if and only if for every z, |z[ 2 1, with corresponding

distinct inner solutions Ky l <2 ¢n, ve have

(3.4) Ro(z,xz) #0, £=1,2,...,n.

PROOF. Suppose there exists Zjs Izol 2 1, with corresponding inner sclution

K, =x, (2), [x, | £ 1 violating (3.4) by satisfying
0 0 0

Ro(z . ) = 0.

.K
0™t

Then the left column of the block B(zo,xz oIy ) 1is identically zero, hence the
0

0
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matrix D 1is singular and by Theorem 2.2, the approximation is unstable.
Conversely, suppose (3.4) is valid, and we want to prove stability,
vhere by Theorem 2.2 it suffices to show that for every z, |z| 2 1, with

distinct inner solutions « 1l £ 2 £ n, each with multiplicity m,, 1 € £ £ n,

[ L

we have
det(D(z;Kl,...,Kn;ml,...,mn)] ¥ S,

For that purpose, let

SO

3 r u
E(—l[KlRO(z'Kl)]

. =0
m -1
9 n u
—_———{KnRO(Z,Kn)]

m -1

(3.5) a
U=-r+l u

% _

be a vanishing linear combination of the rows of D. The vector relation in (3.5)

consists of the r scalar equations

0
S o
a -—k[szo(z.xl)J =0;0sksm-1,1s2tsn,

y==r+l 3Kl

which we write as
X 0
(3.6) L 0™ Rylzaey)s D a0, 06k eml, Let g,
oK us=-r+l

3

o
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By our hypothesis (3.4), the left member in the above brackets satisfies

-r+l
Ky RO(Z,KL) #0,1¢ % ¢n,

Thus, expanding by Leibniz' rule and using induction on k > 0, we find that

the right member in (3.6} has vanishing derivatives at « = ks i.e.,

k 0
dk. [2- uu‘r+u-l]|,<=.< <0;0¢kem-1,1¢t¢n.
A y=-r+l [

We conclude that the polynomial

0

T(c) = Z a Kr+u-1

p=-r+l

which is of degree r-1 at most, has r roots; Kos l s 2 g n each with
multiplicity m,. Hence, T(x) = 0 and the coefficignts au must vanish. By
(3.5), therefore, the rows of D are linearly independent, so the matrix is
nonsinguliar and stability follows by Theorem 2.2,

As was realized in the previous section, if (3.1) 1is reduced to the one-
level case
(3.7) s_lvu(uAt) = ,jaio °J,-1vu+d(t+At) =0, u=0,-1,...,~r+l,

then the associated boundary-functions

Ru(k) = c x"+d g x“s_l(x), U= 0,=~1,...,-r+l,

UL R P

B |
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cease to depend explicitly on 2z, and Theorem 3.1 provide us with

COROLLARY 3.1.

The difference approximation (1.8), (3.7) is stable, if and only if for every

z, !z| 2 1, with corresponding distinct inner solutions ke. 1€ sn, ve have

Ry(x,) = 5_ (k) #0, L=1,2,....n.

Finally, we note that in the case r = 1, which was mentioned in the begianing
of this section as translatory one by definitioi, the matrix representation of the
results which obtained in Theorem 2.2 arnd Corollary 2.2, reduced respectively
to the scalar results given in Theorem 3.1 and Corollary 3.1. Indeed, in this

case, the matrix D is the scalar boundary-function Ro.

——
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3.2. Scheme-independent stability criteria

The stability criterion given in Theorem 3.1, involves the both parts which
constitute the approximation (1.8), (3.1); these are the transletory boundary
conditions (3.1) which generate the boundary-function Ro(z,x), and the (basic)
scheme (1.8) which induces the characteristic equation (2.10) whose z-dependent
solutions «, = Kl(

Our main aim in this section is to provide stability criteria which do not
take into account the (basic) scheme (1.8), but instead, are given solely in terms
of the boundary conditions. In such a way, we shall be able to answer the question
whether a given boundary treatment violates the stability of any basic scheme
(as an approximation to the pure-initial problem-Assumption III).

REMARK 3.1. We emphasize that in the scheme-independent stability analysis
carried out below, i1t is always assumed that the (basic) schemes considered obey
the four basic assumptions, Assumptions I-IV, which were originally made in [6].

The larger part of this section discusses the (somewhat simpler) outflow case.
We recall that these are the outflow scalar components, the stability of which
we have to look for in order to assure the stability of the entire vector
approximation. The end of this seéction is devoted to the inflow case, where
the results follow easily, merely by updating the results previously obtained for
the outflow problem.

We start by recalling Lemma 7 in [8] which discusses the behavior of the
inner solutions xz(z) in the neighbourhood of the point z = 1.

LEMMA 3.1. (Lemma 7 in [8])

Consider the consistent (basic) scheme (1.8) as an approximation to the outflow,

z) are used as test points for the stability of the approximatior.
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a > 0, (inflow, a > 0) problem (1.7). Then, its associated characteristic equation

(2.10) has exactly one outer (inner) solution « = x{z) which gatisfies

k(z=1) = 1.
PROOF. The consistency condition (1.10a) implies that z =1 1is a solution of

the eigenvalue problem (2.Lb)

ijeg -
iaj(Z)e lz-.-.l,E:O = 0’

=t

and by part (ii) of Assumption III (see (2.5)), z = 1 must be a simple solution,

i.e.,

(3.8) 25: aa(z=l) 0, [ 1= al 1] .

J=-r dz

By the consistency conditions (1.10a), (1.10b) and by (3.8) we have

(3.98) Plz,)y _ _ =§ a,(z), _, =0,
| z=c=1 (P | z=1
aP — '
(3.9b) TZ'K)IZ’*K?I = ;'-r JaJ(Z)]Z’l = -Aa-;s-raa(Z)lzal # 0.

Hence, we may apply the Implicit Function Theorem obtaining that in the
neighbourhood of z = 1, the characteristic equation (2.10) cean be uniquely
solved for k as a differential function of 2z; that is, there exists a single

root-function of (2.10), ¢ = x{(z), which satisfies

(3,10a) k(z=1) = 1,

Gl R -7 .-
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Applying the consistency condition (1.10b) once more (see (3.9b) yields

3P . § , _ %P
5;{Z’K)|z=x=l = -ha aj(Z)[z=l = e 5;#Z’K)|z=x=l ’

J=-r

hence the root-function «(z) determined above satisfies

|5

d[]'

=1/xa , [ 1= i

Q

(3.100) K'(z)|z=l=—g—i‘/a'<

Iz=x=l
Combining (3.10a), (3.10b) implies that for z = 14§, § > 0 sufficiently
small, we have

k(z) = 1+(xa) 716 + o(6°).
Hence, the inequality
(3.11) |e(z)| > 1 (|x(z)] <1), a>0 (a<0),

holds in the right real neighbourhood of 2z = 1, and since the basic scheme
(1.8) is assumed to satisfy the von Neumann conditions then by Lemma 2,1I this
inequality holds for all 2z with |z| > 1. Thus «(z) 1is an outer (inner)
solution according to the positive (negative) sign of the coefficient a
which completes the proof.

In the course of our discussion about scheme-independent stability criteria,
we introduce two additional assumptions complementing the first four already made.

We will show that the new assumptions are necessary for stability and provide
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scheme-independent algebraic tests to verify their validity.
To introduce the first new assumption, let the scalar functions aJ(z) and
cj(z) be as in (1.11) and (3.2b), respectively.

ASSUMPTION _ V.

The z-function A(z), given by

(3.128) aln) = |i ay(a)| + | icj(z)l,

J=-r J=0
which may be rewritten in the {orm
(3.12b) a(z) = |P(z,e=1)] + [Ry(z,c=1)},
satisfies
(3.12¢) a(z=e®) 5 0 , 0 < lp| ¢ w.

REMARK 3.2. We note that Assumption V is not scheme-independent, since the

function A(z) in (3.12) depends on both-on the roefficients aJ(z) determined
by <ne basic scheme (1.8} and on the coefficients cJ(z) determined by the
boundary conditions (3.1). However, it should be pointed out that although
Assumption V depends on both parts of the approximation, its validity cen te

assured by considering only one of these two parts. That is, (3.12c) is valid

if either the scheme-dependent condition

:—-‘ﬁ/r-vr—v—v———-—-—-—v‘ rery = B - —

Ry
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{3.13) P(z=e? k=1) = S aJ(z=elw) #0,0<|p ¢,
J=-r
ar the boundary-dependent condition
{3.14) Ro(z=elw,r=l) z ﬁ cd(z=ei¢) #0 ,0<]o| ¢m,

1=0

holds. In particular, one may use (3.14) as a scheme-independent test to verify
the validity of Assumption V.

Verifying the validity of Assumption V becomes much simpler when the basic
scheme or the boundary conditions are either two-leveled or three-leveled, i.e.,
when s or 7t obtain the values 0 or 1. This is the content of the next lemma.
LEMMA 3.2,

Each one of the following four ~~nditionsz is sufficient for Assumption V to hold:

—, S o

(i) - The bssic scheme (1.8) is two-leveled, i.e., s = O.
(1i) - The boundary conditions (3.1) are two-leveled, i.e., T = 0, and are

accurate of order (at least) zero.

(iii) - The basic scheme (1.8) 4is three-leveled, i.e., s = 1, and in addition we

i a.J(z=-l) # 0.

Js-r

have

(3.15a) P(z=-1,k=1)

(iv) - The boundary conditions (3.1) are three-leveled, i.e., v =1, are

(3.15b) Bo(z--l,xnl) z i cJ(z--l) ¥ 0.
=0




.
——— o

“I-jr"”‘ -y W
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Thus, roughly speaking, Assumption V is automatically fulfilled in the
two-level case, and has to be verified at the single point 2z = -1 in the three-
level one.

PROOF. As explained in Remark 3.2 above, each one of the two conditions - either
{3.13) or (3.14) 1is sufficient for Assumption V to hold; thus the result of
our lemma follows directly from Lemma 2.2.

Indeed, in cases (i) and (iii) Lemma 2.2 implies that condition (2.2k)
or equivalently (3.13) holds and hence Assumption V is valid. In the remaining
cases, {(ii) and (iv), the accuracy hypothesis of the boundary conditions enables
us to follow the proof of Lemma 2.2 replacing the functions aJ(z) by CJ(Z)
and obtaining that condition (3.14) holds., Hence, Assumption V is valid also
in these cases.

We turn now to discuss scheme-independent stability criteria and let us start
by studying schemes of dissipative type. The important point in the stability
analysis of such schemes is the fact that generalized eigenvalues 2z with |z] 2 1
may exist only at the single point z = 1 (see Remark 2.3). Recalling also
Lemma 3.1, we find that for |z| 2> 1 all the corresponding innmer solutions
‘2(2) are lying inside the unit disc, i.e., lxl(z)l < 1. Indeed, this argument
is the basis for our next theorem discussing scheme-independent stability criteria
for any dissipative (basic) scheme.

THEOREM _3.2.

Consider the basic scheme (1.8) of dissipative type together with translatory

boundary conditions as an approximation to .the outf;ow problem (1.7).

For one-level boundary conditions, v =°-1, we have

(I) ~-the difference approximation (1.8), (3.7) is stable if for every x with
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o - Inl < 1,
- q
{3.10) RO(K\ = ;;; cj,-lKj # 0,

For multi-level boundary zonditions, Tt > -1, we have

{1I1) - the difference approximation (1.8), (3.1) is stable for every z with |z|:1

and every k with 0 < |k| <1,

{3.17) Ro(z,n) =z E cJ(z)rJ ¥ 0.
J=0
PROOF. Take an arbitrary z with |z| 3 1, and let xl(z), 0 < lxz(z)l €1,

be any corresponding inner solution, so that

(3.18) P(2,k,) = i aJ(z)Ki = 0.

J==r

In order to assure stability, it suffices, according to Theorem 3.1, to show
that

(3.19a) R‘O(z,xz) # 0.
In particular, concerning the one-level case <t = -1, the boundary-function RO

does no longer explicitly depend on 2z and the sufficient condition (3.19a)

is cast in the form (see Corollary 3.1).

(3.19v) Ro(rl) # 0.
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For the case where the inner s»lution xz(z) is inside the unit disc, i.e.,

0 < |xz(z)| <1, (3.19a) and (3.19b) follow respectively by hypothesis (3.16)
and (3.17).

Let us consider then the case where the inner solution xz(z) is lying on

€

the unit circle, i.e., Kl(z) =e%, 0« | < .

Our assumption of the dissipativity of the basic scheme means that the z-

values which satisfy (3.18) with inner solution of the form K, = eig,

0 < |g] s m, obey the inequality
’3.20) |z(K1=ei£)| <1, 0< [g] ¢ +.

Hence, the only possibility to satisfy (3.18) by an inner solution of the form

<, = e® andby z with |z| 31, is the possibility of x, = e

ig -
£ |g=0 ~ 1,

where by (3.20), continuity implies that the corresponding z-value satisfies

(3.21) |z(xz=e )| ¢ 1.

ig
| =0

We therefore conclude that it remains to verify (3.19) in the case where x2=l
and the corresponding z-values are lying on the unit circle, z = eiw,
0z |9 <.

Now, since the dissipative scheme (1.8) is consistent with the outflow
problem (1.7), then according to Lemma 3.1, k, *= 1 1is excluded as an inner
solution corresponding to z = 1, For the remaining z-vlluea,z=eiw.0<|w|<n,

vhich may be taken into consideration, we have by (3.18) and by Assumption V
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(3.22) IR (z=eiw,<z=l)| = A(z=e®) 40 ,0< |0 5% .

0
That is, (3.19) is valid also in this case, and stability follows.

The first part of Theorem 3.2 discussing one-level boundary conditions,
provides a relatively simple stability criterion, as it depends on one variable, «x.
Thus for example, m-order extrapolated boundary values

m+l
v

(3.23) (1I-E) " =0, u=0,-1,...,-r+l

can be easily checked as satisfying (3.16), since we have
+
Ry(x) = (1-<)™1 ¢ 0, 0« [e] < 1.
In particular, in the case of a two-level basic scheme, where the validity
of Assumption V follows by Lemma 3.2, we obtain the following well-known

result (3], [7].

COROLLARY 3.2. {Theorem 5.2 in [73).

The two-level dissipative scheme (1.8) together with extrapolated boundary

values as given in (3.23) constitute a stable approximation to the outflow

problem (1.7).
In the last corollary vwe required that the basic scheme will be two-leveled
in order tc assure the validity of Assumption V. When we turn to extend Corollary

3.2 {0 the general multi-level case, we find that Assumption V is indeed a
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necessary one, as shown by the following example:

Consider the three-level 5-point dissipative basic scheme
€ 2. -1,2 -1
1 = - - - - -
(3.24) vv(t+At) (1 —l—g(u I1){I-E" ") ]vv(t At) + Xa(E-E )vv(t),
v=1l,2,..., da ¢ 1-€, € <1,

which follows by adding the dissipative term -1%2-;)2(1-—E_1)2vv(t-l\t), to the
usual Leap-Frog scheme, see [11, Section 9]. For both schemes, the associated
characteristic equation has exactly one inner solution «k = k(z), satisfying
k(z=-1) = 1 (see [6, Lemma 6.2]). Now, when the scheme is complemented by
m-order extrapolation of the boundary values vb(t),v_l(t), the approximation

becomes unstable, as follows from Corollary 3.1, since we have

m+l  _ 0.

RO[K(z)]|z=_l = (l-K)lK=l =

This instability is explained by the fact that the approximation fails to satisfy

Assumption V. Indeed, in the general case of one-level boundary conditions

which are at least zero~order accurate, such as the m-order extrapclation, we hrve

by (1.10a)

Hence, Assumption V, which becomes

¥ ol adan e .r —-_—
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& .
A(z>f|4_ aj(z)!¢o;z=e“",o<lwlsﬂ.
=-r

is violated by our scheme (3.24) at the point 2z = -1 since

A( =1-..21.| =0.
kA

Z)Iz=—l '
z=-]1

We note that by Lemma 3.2, 2z = -1 1is indeed the only possible point for a
three-level scheme to violate Assumption V.

It was already mentioned, that the stability criterion (3.16) provided in
Theorem 3.2I which discusses one-level boundary conditions, is relatively a
simple one, since it involves only one variable ,«. Concerning the wide
family of multi-level boundary conditions, the stability criterion provided by
Theorem 3.2I. in (3.17), is more complicated since it involves two independent
variables, z and «x.

This motivates us to look for z-independent alternatives to Theorem 3,211, for
both, dissipative and particularly non-dissipative schemes, conplemenﬁed by
multi-level boundary conditions. This matter will occupy the renaindér of our
disscusion about the outflow problem. '

We start by introducing the boundary-scheme associated with the boundary

conditions (3.1)

T
S_lvv(tﬂst) = Eo Sov“(t-cAt), v = 0,81,12,...,
o=

8, = i cJaEJ v 0= =1,0,...,T,

J=0

(3.25)




- 58 -

which is generated by extending the definition of the boundary values in (3.1},
vu, u=0,~1l,...,~-r+1, to all grid points xv, -0 <y < o,

Since the boundary conditions (3.1) were assumed to be multi-leveled, i.e.,
T 1is non-negative, it follows that the boundary-scheme (3.25) is well-defined
as a difference scheme, whose values are computed by advancing in the direction
of the time-axis.

As was realized in Section 2.2 the splitting property described in lemma
2.1 was the key in investigeting the solvable (-Assumption II), scheme (1.8),
and we would like this result to be applicable also for the boundary-scheme
(3.25). For that reason, we require the solvability of the boundary-scheme
by making the following analogy of Assumption II.

ASSUMPTION VI.

The boundary-scheme (3.25) is solvable; that is, there exists a constant

Ky > 0, such that for every Y € la(x), there is & unique solution, v, w € la(x)

for
(3.26a) S_lwv = \l’v » VB o+l ,ar+2,...,
with
22 2
(3.26p) Iwi x s Ko-uzﬂ x

REMARK 3.3. To assure Assumption VI, one may use Lemma 1.1 which characterizes
solvability. Recalling the notation there, the index r, in (1.16) equals zero
in the case of the right-sided boundary-scheme (3.26a), since by (1.13) we have
cO,—l # 0. Thus, we may apply the second part of Lemma 1.1, replacing the scalar

function Q_ (k) in (1.17) by S_,(x) given in (3.3b), to obtain that

’ o/—r-'-—cv—-—-———-w
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M

(3.27) 5,(x) = J¥0, 0« [« s 1,

< CJ,—lK
is a sufficient condition for the solvability of the boundary-scheme (3.25).
In particular, solvability follows for explicit boundary conditions, where
S_l(K) Z constant.

Before continuing we want to associate with the boundary conditions (3.1)
two concepts - the von Neumann condition and dissipativity - concepts which
were previously associated with the basic scheme (1.8). We will find it quite
attractive to express our forthcoming stability criteria in terms of these
well-understood and easily checkable concepts.

The boundary-scheme (3.25) has the associated characteristic equation

q

(3.28) Ro(z,n) z ZECJ(Z)KJ = q,

Cae

by means of which, satisfying the von Neumann condition and dissipativity make
sense. Upon linking these properties with the boundary-conditions we get:

The boundary conditions (3.1) are said to satisfy the von Neumann condition

if
q
(3.29) Ro(z,x=eig) = zz_ cJ(z)eiJE #0,lz] >1, 05 |g| ¢,
350

and are said to be of dissipative type if

E‘A__tz.i(z)ei‘,E $0, |z| 21,0« |g] <.

(3.30) Ro(z,x=eig)
J=0




!
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We recall thet Lemma 2.1 is valid for any solvable scheme. Applying that
lemma for the solvable boundary scheme {3.25), yields the following result.
LEMMA 3.3.

For the houndary conditions {3.1) which satisfy the von Neumann condition,

we have for z, ]zl > 1

"

:ii: cJ(z)zJ $#0,0<|x| g1.

(3.31) Ro(z,x)
J=0

PROOF  Take an arbitrary z, |z] > 1 and consider the (polynomial) characteristic
equation (3.28). By Lemma 2.1I all of its non-zero solutions x = k(z)
satisfying |x(z)| > 1. Thus there are no non-zero solutions of (3.28) in the
closed unit disc, i.e., (3.31) holds.
REMARK 3.4. 1In the course of proving Lemma 2.1 we used Assumption I, according
to which a_(z) # 0, |z] 2 1, r denoting the number of left spatial mesh
points that the basic scheme rests on, As explained in Remark 2.1, this condition
is required in order to assure that multiplying the characteristic equation by
factor «' does not yield additional zero solutions «x = 0. We note that upon
applying Lemma 2.1 for the right-gided bvoundary scheme (3.25) as done in Lemma 3.3,
we are free from requiring, analogously to Assumption I, that c.(z) ¥ O, lz]31,
since the index r is vanished in this case, i.e., zr = 1.

By continuity arguments, Lemma 3.3 implies the following immediate result.
COROLLARY 3.3.

For the boundary conditions (3.1) which satisfy the von Neumann condition,

we have for =z, |z| 31

TTTTeTIT LT AT e T
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9
3 32 Rytzse) = ; FJ(:)KJ £ 0,0 < [g] <1,
J=0
pronf. 3y Lemma 3.3, the sclutions, KJ = Kj(z), of the characteristic equation

1%.028) satisfy for z, |z| > 1, |<J(z)! > 1.
Hence, for z, |z| : 1, these continuous solutions satisfy IKJ(Z)I 21, ard

the result follows.

Combining the last corollary with Theorem 3.2, we obtain the following scheme-
independent stability criterion of the desired type.

THEOREM _3.3.

The basic scheme (1.8) of dissipative type, together with the boundary

conditions (3.1) which satisfy the von Neumann condition, constitute a stable

approximation to the outflow problem (1.7).

PROOF. Since the boundary conditions (3.1) satisfy the von Neumann condition,
then by Corollary 3.3 we have (3.32) which by the second part of Theorem 3.2
is sufficient for stability.

The last theorem provides a scheme-independent stability criterion for
difference approximations whose basic scheme is limited to be of dissipative type.
We turn now to the general case, of basic schemes which are not necessarily
dissipative, In particular, we refer to the case of non-dissipative schemes
vwhere unlike the dissipative case all 2z 1lying on the unit circle may serve as
generalized eigenvalues,

THEOREM 3.k,

The basic scheme (1.8) togethier with the boundary conditions (3.1) of

dissipative type, constitute a stable approximation to the outflow problem (1.7,,

b




r
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PROOF  Take an arbitrary z with |2] : 1 and let zi(z), 0 < ]Kl(z)] <1, be

any corresponding inner solution, so that

£2.33) Plz,c ) = Ei: aJ(z)Ki = 0.

In order to assure stability, it suffices, according to Theorem 3.1, to

show that

(3.3L) (z,0,) 2 :E:: c (z)< # 0.

{0

We first note, that since the boundary conditions were assumed to be of
dissipative type, they particularly satisfy the von Neumann condition; so Lemma
2 3 and Corollary 3.3 may apply to our case,

Now, for z-values outside the unit disc, |z| >1, (3.34) follows from
Lemma 3.3, end for an inner solution which is inside the unit circle,

|<2| <1, (3.34) follows from Corollary 3.3.

Therefore, it remains to verify (3.34) for the case that both 2z and «

L

are lying on the unit circle, i.e.,

]
o

(3.35) z 10 0 ¢ lo| s 7 5 x, = 18 , 0 < |£]

o

For an inner solution of the form «, = elE, £ # 0, (3.34) follows from the

dissipativity of the boundary conditions (see (3.30)). So let us consider an

inner sclution of the form «xk, = ei = ],

] |g=0

By Lemma 3.1, upon approximating the outflow problem (1.7), x, = 11is

-y TS T v —_—
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excluded as an i1nner solution corresponding to =z = 1; and for the remaining
z-vaiues, z = e % , 0 « @] ¢ 7, which may be taken into consideration, we have
by (3.33) and by Assumption V
ip

(3.36) [R. (z=e ",k ,=1)| = Alz=e"") # 0 , 0 < |@| £ n .
That is, (3.34) is valid also in the remaining case, and stability follows.

Combining Theorem 3.3 and 3.4 we immediately obiain the following summary
result.

CORCLLARY 3.k,

Consider the basic scheme (1.8) together with the boundary conditions (3.1)

which satisfy the von Neumann condition, as an approximation to the outflow

problem (1.7). If either the basic scheme (1.8) or the boundary scheme (3.25) {is

dissipative, then the approximation is stable.

We note that the stability properties of the boundary scheme, namely,
dissipativity and the von Neumann condition, are often known in advance. 'Tnhus,
in applying the last scheme-independent stability criteria summarized in Corollary
3.4, then beside the four basic assumptions {Assumptions I-IV) which the
approximation is always assumed to satisfy (see Remark 3.l1), it remains to verify
the validity of the additional assumptions, Assumptions V and VI.

For the purpose of assuring these assumptions, one may use Lemma 3.2 and
Remark 3.3 which imply in particular that Assumption V is automatically fulfilled
in the case of two-level boundary conditions, and that the solvability assumption

VIl 1is automatically fulfilled in the case of explicit ones.

.7/-_, - ——— ——— —— - .
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Yet, referring to the general multi-level implicit case, then Assumptions
V and VI are indeed necessary for the validity of the scheme-independent
stability criteria given in Theorems 3.3 and 3.4.

Concerning the first of these two, then by Lemma 3.2 it follows that
Assumption V is automatically fulfilled in the two-level case. When we raise
the question whether stability is maintained also in the general multi-level
case involving more than two time steps, the following example shows that the
answer to that question is negative. That is, Assumption V is indeed a
necessary one,

Consider the non-dissipative Leap-Frog scheme

(3.37a) v (t+at) = v (t-bt) +ka-[vv+l(t)-vv ()] , v=1,2,...,

-1

together with the solvable consistent boundary condition

(3.37v) volt+at) = vo(t-at) + 2xa-[v (t-at)-v,(t-at)],
The boundary function associated with (3.3Tb) 1is given by

(3.38) Rolz,c) = 1 = 272 [1+2ha(x-1)]

and its z-roots, z = z(x), satisfy for 0 < ia g 0.5

(3.39) [22(keel®) P < (|1-22a] + [20a])2 =1 , 0 < [£] & =
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Thus, the explicit (and hence solvable) boundary condition (3.37b) is of
dissipative type; so approximation (3.37) fulfills the requirements of both
Theorem 3.4 and Assumption VI,

At the same time, the approximation (3,37) is unstable. Indeed the
characteristic ecuation associated with (3.37a)

2—z~l' Aa( K—K-l) = 0,

P(z,k) = 1-2~
has exactly one inner root-function, x = k(z), satisfying «(z=-1) =1
(see [6, Lemma 6.2]), and by inserting it into the boundary-funetion (3.38),
ve get

-2
(3.k0) Rolz=-1,k=1) = 1-z -[1+2ra(x-1)1) _ , = 0.

k=1

Thus, the approximation (3.37), is unstable since it violates the necessary
stability condition {3.4) at the point gz = -1.

The instability of approximation (3.37), despite that it fulfills
the requirements of both Theorem 3.4 and Assumption VI, is explained by its

failure to satisfy also Assumption V as follows from (3.38):

i

(3.41) A(z=e™" oo

a = |R0(z=—l,x=l)l = 0,
We remark that according to Lemma 3.2, the only possibility of the three-level
approximatior (3.37) to violate Assumption V 1is at the single point 2z = -1,

as we have indeed found in (3.41).




Concerning the solvability Assumption VI, its necessity can be shown by
considering any two-level 3-point dissipative basic scheme together with zero

order accurate boundary condition of the form
(3.42) volt+at) - Bv, (t+at) = volt) - Bv (t) , B > 1.
The boundary-function associated with (3.42) which is given by

(3.43) Ry(2,%) = (1-271)+(1-80) ,

satisfies Ro(z,<=ei€) #0, |z| >1, 0 s |g] < », hence by (3.29) the boundary
condition (3.42) satisfies the von Neumann condition snd the entire approximation
fulfills the requirements of Theorem 3.3. Furthermore, since the basic scheme

was assumed to be two-leveled, then by Lemma 3.2, Assumption V is fulfilled as well.
Yet, the approximation is unstable since the boundary-function (3.43) vanishes at

z = 1 independently of «k-values; hence the necessary stability condition (3.U4)

is violated. This instability is explained by the failure of the boundary scheme
associated with (3.42) +to be solvable. Indeed, recalling the solvability definition

in (3.26), then by taking ¥ = 0 in (3.26a) we find that the grid function

I GOV b -
w =-{B wo}v=_r+1€22(x) with arbitrary Ve satisfies S—lwv = wv—Bwv+1 a 0, vy-r+l.

Thus, we have neither the uniqueness nor the boundedness which is required in
(3.26b).

Our study of the outflow problem is completed, and we turn now to discuss
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some remarks concerning the inflow one.

We first note that all the results which were discussed in previous sections
go over unchanged except for Lemma 3.1. The result of this lemma discussing the
behavior of inner solutions in the neighbourhood of z = 1, depends on whether we
approximate the outflow problem or the inflow one.

In the outflow case, Lemma 3.1 is used to exclude the possibility of Ky = 1
to serve as an inner solution corresponding to z = 1. In the inflow case,
however, the situation is just the contrary; that is, according to Lemma 3.1, z = 1
has always exactly one corresponding inner solution Ky = 1.

Now, we recall that all our stability criteria, particularly the scheme-
independent ones, were obtained. by applying Theorem 3.1 which characterizes
stabllity by requiring that for every & with lzl 2 1 and.every corresponding
inner. solution Ky = Kl(z),_l < L € n, we have RO(Z’KQ) # 0.

We therefore conclude that when dealing with the inflow problem, all our

previous stabjlity. criteria still hold upon making the additional requirement

Ry(z=1,k,=1) # 0,

a requirement which was automatically excluded by Lemma 3.1, in the ocutflow case.
Thus for example, referring to the summary result in Corollary 3.4, we obtain
for the inflow problem

COROLLABY 3.5.

Consider the basic scheme (1.8) together with the boundary conditions (3.1)

————

which satisfy the von Neumann condition, as an approximation to the inflow problem

L O ane —~vr
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(1.7). If either the basic scheme (1.8) or the boundary scheme (3.25) is

dissipative and if in addition vwe have

(3.42) Ro(z=l,x=l) #0,

then the approximation is stable.

We note that when the additional condition (3.42)

#0

c

[ 9
urvqn
Q

RO(Z’K)]z=|<=l = J(Z)|z=l
holds, then according to (1.10a) the boundary conditions must be inconsistent
and in fact have no accuracy with respect to the differential equation. This
indeed makes sense since one cannot expect the stable approximation (1.8), (3.1)
whose values are uniquely determined in the quarter-plane x, t 2 0, to be
consistent with the inflow problem (1.7) which is not uniquely determined unless
extra boundary data is supplied as given in (1.Tb). Thus in general, consistent
boundary conditions of translatory type approximating the outflow problem are

of no value when dealing with the inflow one. Yet, there is one important case
which we shall now consider. That is, when the missing boundary values are
computed via summations of the form (see {7, Theorem 6])

q

(3.43) ;;é_vu+d(t) = gu(t), gu(t)€£2(t), WS 0,=1,...,=r+l,

For the purpose of determining stability, we consider the boundary-function

| op——
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q
associated with the homogeneous part of (3.43), which is given by RUIK) = E «
J=0

We have RO(K) # 0 for all x # 0 and hence by Corollary 3.1, the stability
of both the outflow and particularly the inflow approximation (1.8), (3.L43)

is assured. Setting q to be zero, we obtain the well-known result [7], [10]
of the unconditional stability of the approximation whose boundary values are
determined by arbitrary bounded inhomogeneous terms vu(t) = gu(t) .
u=0,-1,...,-r+l. Indeed, this result was mentioned earlier in Section 1.1,
where it was used to assure the unconditi~nal stability of the inflow scalar

components of the vector approximation (1.5), (1.3).
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L. EXAMPLES OF SCHEME-INDEPENDENT STABILITY INVESTIGATIONS.

In this chapter we study some examples of translatory boundary conditions
which together with corresponding basic schemes constitute stable approximations
to the outflow problem (1.7).

For that purpose, we apply the scheme-independent criteria of the previous
chapter, so that stability is not restricted to a specific basic scheme. That
is, the acquired stability is valid for a family of approximations which consists
of the boundary conditions together with any basic scheme having some general
property (the "familial" property) such as dissipativity, two-levelness, etc.
REMARK L.1. Tt is of course understood that beside requiring the basic schemes
to satisfy some general ("familial") property which follows from the scheme-
independent stability analysis, all basic schemes considered must satisfy the
four basic assumptions, Assumptions I-IV (see Remark 3.1). 1In particular, we
refer to the stability assumption, Assumption III, which may lead to impose some
restriction on the time step used At.

We note that the stability criteria given in Theorems 3.3 and 3.l are
independent of the index r, which denotes the number of boundary values to be
computed at each time level vu(t), ¥ =0,-1,...,-r+1, Hence, verifying the
stability in the simpler case of computing a single boundary value, vo(t),
(complementing for example, & 3-point basic scheme) requires no more effort than
the stability verification in the general translatory case of r boundary values,

> 1, complementing a basic scheme of the general form (1.8).

The above observations are particularly relevant to those boundary treatments

.
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which are considered below, and whose stability is already discussed in the
literature. However, the verification of stability given below has two specific
features: first, because the stability investigation is independent of the basic
scheme and of the solutions of the corresponding characteristic equation, then
the procedure becomes much shorter; secondly, the translatory nature of the
boundary treatment assures that the acquired stability is valid for any basic
stable scheme and not necessarily for 3-point ones.

Let us turn then to the examples themselves. and consider first boundary
conditions which complement any dissipative basic scheme.
EXAMPLE L.1. (example (6.11) in [6]). Let the boundary conditions be determined

by oblique Lagrangian extrapolation of order m-1:
m
<+
(L.1a) vu(t+At) = z (’3’)(-1)J lvu+J[t—(J-l)At] , U= 0,-1,...,-r+l.
=1

The boundary-function associated with (k.la) is given by

(l-z'lz)m

(L.1b) Ry(z,x) = 1- Z (‘.;‘)(-1)""1{".:'1
J=1

and by equating to zero, we get that the z-solutions of (4.1b) satisfy

[2(k=el®)| = [el¥] =1, v&.

Thus, the explicit and hence (by Remark 3.3) solvable boundary conditions (k4.la)

are of non-dissipative type so they satisfy the von Neumann condition. According
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to (4.1b) we also have z(k=l) =1, so A(z=e?) 3 IR (z=elw,x=l)!>0, o<|e@]em,

o

i.e., Assumption V 1is valid and stability follows by Theorem 3.3.
EXAMPLE L4.2. (example (6.3¢c) in [6], example (3.4) in [1L4]). Let the boundary
conditions be generated by the Box-Scheme, i.e.,
(4.2a) vu(t+At) + vuﬁ(tﬂst) - Aa-[vu+l(t+At) - vu(t+At)] =
= vu(t) + vu+l(t) + Aa°[vu+l(t)-vu(t)] y W=0,-1,...,-r+1,
The boundary-function associasted with (%.2a) is given by

(4.2b) Ro(z,z) = l+x-la(xk-1l) - z-l'[l+K+Aa(K-l)] s

ar .. by equating to zero, we get that its z-solutions satisfy

ie)‘ - 1+ei€+xa(ei£-l) -

[2(k=e
l+eiE-Aa(eiE—l)

1, VE.

Thus, boundary conditions (4L.2a) are of non-dissipative type so they satisfy

the von Neumann condition. Approximating the outflow problem (a>Q) we have
Re[S_,(x)] = 1+Re(x) + Aa-[1-Re(x)] # 0 , || ¢ 1.

Hence (see Remark 3.3), the boundary conditions (4.2a) are solvable (i.e.,

Assumption VI holds), and since they are also two-leveled then (by Lemma 3.2)

|
ﬁf T —vr— - - -
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Assumption V holds as well. Therefore we may apply Theorer 3.3 obtaining
stability.

In view of the stability discussion in Examples 4.1, 4,2, it follows that
any dissipative basic scheme together with translatory boundary conditions which
are generated by oblique extrapolation or by the Box-Scheme, constitute a stable
approximation to the outflow problem (1.7).

EXAMPLE 4.3, ([2] , example (6.2b) in [15]). Let the boundary conditions be

generated by the right-sided wieghted Euler scheme, i.e.,
v (t+at) = v (t-at) +2)\a-[vu+l(t)-0.5'(vu(t+At) + v (t-a¢))],
u=0,-1,...,~r+l.
The boundary-function associated with (4.3a) is

(b4.3p) Ro(z,z) = l-z-2-2Aa-[K-z—l-O.5-(1+z“2)],

and by equating to zero, we find that its z-solutions are given by

(L4.3¢) z(r=eia) = eiE A%EE%EL , b(E) = V(ka)2+e-ai€[1-(xa)2].

In order to assure stability, we restrict the time-step At by requiring

the Courant-Friedrichs-Levi (CFL) condition

T L pR P . o
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(L.3d) 0 < Aa g 1.

We note that the CFL requirement (4.3d4) is automatically fulfilled in the case
of an explicit basic scheme, since by our Assumption III, the basic scheme must
satisfy the von Neumann condition.

Having (b4.3d), it follows that |%)| ¢ 1, 0 ¢ |€] < #. Thus, the explicit
and hence (by Remark 3.3) solvable buundary conditions (U.3a) satisfy the von

Neumann condition

_. ig Aa+|b(E&)
lz(k=e™™)| ¢ S+« 1, Ve
+
According to (4.3c) we have z(xk=l) = %if% # eiw, 0 < |w| <, so
A(z=e'?) 2 |R0(z=e1w,x=l)| >0,0c<|o| «n, i.e., Assumption Vv is valid. We

may apply now Theorem 3.3 to conclude that any approximation to the outflow
problem (1.7) which satisfies the CFL condition (4.3d)(l), consisting of a
dissipative basic scheme together with the translatory boundary conditions (4.3a),
is stable.

We turn now to study general difference approximation consisting of any basic
scheme (which is not necessarily of dissipative type) together with the following
boundary treatments.

EXAMPLE L4.L4. (example (6.3b) in [6] , example (3.2) in [14]). Let the boundary

conditions be generated by the right-sided explicit Euler scheme, i.e.,

(L.ba) vu(t+At) = vu(t) + Xa'[vu+l(t)-vu(t)], U= 0,=1,...,-r+l.

(1) A further restriction on the time step At may arise from the stability
requirement made in Assumption III (see Remark 4.1).
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The boundary-function associated with (4.ka) is given by
(4. bb) Ro(z,k) = 1-z"te[10ra(x-1)],
and by equating to zero, we get that its z-solutions satisfy
i 2 2

[2(c=e ") [° = (1-ra+)ra-cosE)® + (Aarsing) < (ll-xa[+{xa[)2 , 0 < |g] .
Thus, requiring the CFL condition
(L.be) 0<ia <1,
we see that the boundary conditions (U4.La) are of dissipative type. Since the
boundary conditions (4.la) are also explicit and two-leveled then by Lemma 3.2
and Remark 3.3, both Assumptions Vv and vI are valid and stability follows ggpm
Theorem 3.4,
EXAMPLE L.5. (example (3.3) in [14]). Let the boundary conditions be generated
by the right-sided implicit Euler scheme, {i.e.,
(4.5a) vu(t+At) -Aa'ﬁvu+l(t+At) - vu(t+At)] = vu(t) s B = 0,-1,...,~-r+l.

The boundary-function associated with (4.5a) is given by

(4.5b) Ro(z,x) = 1-Aa(x-1)-z'1.

WALy B A id N .
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and by equating to zero, we get that its z-solutions satisfy in the outflow case

{a>0)
l2(k=e %) = [(1+ra-rc-cost)” + (11-5in€) 1Y < [h+ral-1ra]d™ = 1, 0 < €] « =,

Thus, boundary conditions (L.5a) are of dissipative type. Approximating the

outflow problem (a>0) we have
RE[S_l(K)] = 1+ia-1-Re(x)] # 0 , |x] < 1.

Hence (see Remark 3.3), the boundary conditions (L4.5a) are solvable (i.e.,
Assumption VI holds), eand since they are also two-leveled then (by Lemma 3.2)
Assumption V holds as well. Therefore we may apply Theorem 3.4 obtaining
stability.

In view of the stability discussion in Examples 4.4 and 4.5, we may conclude
that if the boundary conditions (3.1) are generated by a stable right-sided
explicit Euler scheme or by the right-~sided implicit Euler scheme, then the
entire approximation (1.8), (3.1) is stable.

EXAMPLE L4.6. Let the boundary conditions be of the form

(4.6a) (l+Xa)vu(t+At) + (l-Xa)vu+l(t+At) =

= 2Aa~[vu+l(t)-vu(t)] + (l-Aa)vu(t~At) + (1+Aa)vu+l(t-At); po= 0,-1,...,-r+l.
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The boundary-function associated with (L4.6a) is
(4.6b) Rolz,k) = 1+hat(1-ra)k-2 2 2aa(k-1) -2 2+[ (1-Aa) + (1+2a)x1],

and by equating to zero, we find that its z-solutions are given by

__i£,_ ral-sinf/2 + cosg/2
(b-6c) z(x=e™”) = ~dai-sint/2 + cosg/2 *

and hence ‘z(:=elg)| = 1. Thus, the boundary conditions (4.6a) are of

non-dissipative type so they satisfy the von Neumann condition. Furthermore,

we have in the outflow case (a>0)
Re[S_,(x)] = 1+Re(x) + ras[1-Re(x)] # 0, || <1,
and hence (see Remark 3.3) boundary conditions are alsoc solvable, i.e., Assumption
vI holds. To assure stability via Theorem 3,3. it then remains to verify
Assumption V.
Now, since by (L.6¢c) we have z(x=1) = 1, hence
/\(zseiw) Py lRo(z-eiw,K-l)l >0, 0« I‘Dl <n ,

and therefore the validity of Assumption V follows upon requiring

A(z=-1) = |P(2=-1,x=1)| # 0.
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Here, P(z,c) den-tes as usual, the characteristic function associated with the
basic scheme.

Applying Theorem 3.3 we conclude that the boundary c>nditions (4.6a), which
complement any dissipative basic scheme whose characteristic function P(z,k)
satisfies

(4.64) P(z=-1,k=1)

constitute a stable approximation to the outflow problem (1.7).

Since by Lemma 2.2T7 condition (4.6d) which may be rewritten in the form

Zf: ad(z=—l) #0

J==r

is automatically fulfilled in the two-level case, we obtain that stability

follows whenever the boundary conditions (h.6a)'complement any two-level

dissipative basic scheme. We note, however, that in the general case of multi-

level basic schemes involving more than two time-steps, the additional requirement

(4.6d) is indeed a necessary one as shown by the following example:
Consider the three-leveled dissipative acheme (see (3.24))

1)

(h.7a) \v(t+At) = [I - T%wE-I)Z(I-E-l)23vv(t-At) + Aa(E-E~ v (t),

v=1,2,..., Aa ¢ 1-€, € < 1,

end let the boundary value vo(t+At),v_l(t+At) be computed by (L.6a), i.e.,

! w.-.".
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(.7 {1+2a)v (t+At) + (1-)ra)v (t+at) =
" u+l

= 2a* v _(t)-v (t)] + {1-ra)v (t-At) + (1+aa)v _{t-at), u = 0,-1.
u+l u 9] Pl

+1

The characteristic equation associated with the basic scheme (L4.Ta), has
exactly one inner rooct function ¢ = k(z) satisfying x(z=-1) = 1, and by
inserting into the associated boundary-function we get

Rp(z=-1 4 k=1) = 1+Aa-(1-xa)x_z“l-zxa(.<-1)-z‘z-[(l-xa)+(1+xa)-<] 0.

z=—l=
k=1

Thus, approximation (4.7) is unstable due to the violation of the necessary
stability condition (3.L4) at the point z = -1.

Recalling the summary result which follows Example 4.6, we find that
approximation (4.7) satisfies all the required hypothesis except for condition

(4.6d). 1Indeed, we have

(4.7¢) Plz=-1,k=1) = 1-z " oa(ke H)oa®e [1g5(e-1)31-HZ = 0.

=1

We remark that according to Lemma 3.2, z = -1 is the only possible point for the
three-level basic scheme (L.7a) to violate Assumption V, as we have indeed found
in (k. 7e).

We close this chapter by considering difference approximations to the two

ipace dimensiounal problem

- ——— e eyt = a1t~ e e —ee -
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dulx,y,t)/at = adulx,y,t)/3x + bdulx,y,t)/3y , a> 0 ; ul{x,y,0) = £(x,y),

in the quarter space x 2 0, t 2 0, -» < y < », The analysis of such initial-
boundary problems in both the differential case (see [9]) and the difference
case (see for example [1]) can be carried out by Fourier transforming witn
respect to the variable y; thus obtaining a one space dimensional problem of

the type analyzed in the previous chapters. To be more precise, let A4x, Ay

be the spatial mesh width such that Ax = At/Ax = constant,

Ay =  At/Ay = constant and denote by vv,c(t) = v(vAx,zAy,t) the approximated
grid function. Then, Fourier transforming in the y-direction {with dual
varisble n) and Fourier-Laplace transforming with respect to the tirme-variable
znzjeicn.

t leads one to search for normal modes of the form Vv C(t) =
]

substituting such modes as a grid solution for a given difference scheme,

Upon

we obtain the corresponding characteristic equation. If in particular the scheme
is the one generates the translatory boundary conditions considered, we obtain
the associated boundary-function which determines the stability properties of
these conditions. Both the characteristic and boundary functions involved in

the two space dimensional case are dependent on the extra parameter n, and

our former results are still valid in this case since all estimates made are
uniform.in n (see [6],[8]). The only exception is that of Lemma 3.1, according
to which the possibility of k = 1 to serve as an inner solution corresponding
to 2z =1, is excluded in the ocutflow case (a>0). The proof of lLemma 3.1 is

based on the consistency condition, so iit3 validity in the two space dimensional

case is restricted to the single point n = 0, Therefore, for the result of

- .
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ILemma 3.1 to be valid independently of the extra parameter n, the additional
requirement

(4.8) Ry(z=l,k=1,n) # 0, 0 < [n] < =,

nust be fulfilled. Thus, to apply our scheme-independent stability criteria for
a two space dimensional approximation, we first determine the boundary stability
properties by employing the associated boundary-function. Then it remains to
check whether the approximation meets the additional assumptions V and VI, and
whether condition (4.8) is fulfilled.

We note that when verifying the validity of Assumption V in the two space
dimensional case, one may no longer use Lemma 3.2 in which conditions for
the validity of Assumption V for twc-and three-leveled schemes, are discussed.
Indeed, the lemma follows from Lemma 2.2 whose proof is based on the zero order
accuracy condition, i.e., when dealing with the boundary conditions we have
Ro(z=l,z=1,n=0) = 0. Thus, the conclusions of Lemma 2.2 and Lemma 3.2 hold
only in the neighbourhood of n = 0 and are not necessarily valid for all n,
0 ¢ |n] s .
EXAMPLE L4.7. Let the boundary conditions be generated by the right-sided explicit

Euler scheme,i.e.,

+
v, C(f. At) = v

(t) + *x“'“wl,c(““’u,c(t)] + Ayb-[v (t)"’u,c(")]’

U8 YyG+l

(L,9a)
U= 04=1l,0.0y-T4l, =@ < [ < &,

rAT —wr : Rt




- 8 _
The boundary-function associated with (L.9a) is given by
-1 in
(L.9b) Ro(z,x,n) =1-z -[1+Axa-(x—1)+xyb-(e -1)1].

«nd hy ecquatine to zovre we et thnt its 7w onolutions satinfly

o]

[z(,(=eig n) 2.(1-) a-A b+l _a-cosE+) b-cosn)2 + (A a+sing+d_tecinn)™ <
' ’ x ¥ X y x y
(L.9¢)

N 2
< (11 8=A 0] + [hanav])®, 0 < gl cw, 0< |n| <o,
Then, upon imposing the CFL conditieon
X
(b.9d) O<iav Ayb <1

we see that the explicit and hence (by Remark 3.3) solvable boundary conditions

(4.9a) are of dissipative type. By (L.9d) it follows that in the outflow case

(a>0) we have Ayb ¢ 1, hence

2 2
l2(k=1,n)|" = (1-2 b+d becosn)® + (Ayb-sinn)z <|1-xyb|+|xyb|= 1,

(4.9e)
o< e,

so condition (L4.8) is fulfilled. Consistency implies that z(xs1l,n=0) = 1 (gee

(h.9e)) and together with (4.9e) we finally get
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[

A(z=eiw,n) 2 IRO(z=ei x=1l,n)f >0 ,0<|ol 7, 0¢|n| ¢,

i.e., Assumption V holds. Therefore we may apply Theorem 3.4 concluding that

if the CFL condition (4.9d) is fulfilled(l), then the outflow boundary conditions

(4.9a) always maintain stability independently of the interior scheme.
Boundary conditions (L4.9a) are generated by an obvious extension of the usual
one space dimensional right-sided Fuler scheme discussed in Example k.4, Another

possible extension is given by (see example (2.5) in [1])

(t)-v. ()],

v (t+At) = v
UG u u,+l u,t-]

3

C(t) + Axa-[vu+l.c(t)-vu'c(t)] + O.S-Ayb'[v

]

(4.10a)
U= 0,=l,...,-r+l, —= < [ < o,

These boundary conditions are unstable in the sense that the z-solutions of the

associated boundary-function

(.10%) Ro(z.x,n) = I-z—I-[Axa(K~l) ¥ ixyb-sinn].
satisfy

i 2
(L4.10¢) | z(k=e E.n)l = (l-Axa+Axa-cos£)2 +(Axa-sin£ + xyb~sinn)2,

ig 2
hence |z(x=e ’")J§=0'
(1) A further restriction on the time step At may arise from the stability
requirement made in Assumption III (see Remark L.1).

=14+ (Xyb'ninn)2 >1, 0 < |n|] £ v . Thus, boundary
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conditions (L4.10a) fail to satisfy the von Neumann condition for all n, Os<|n|sm
and our scheme-independent stability criteria are inapplicable in this case.
The question of stability is, in this case, dependent on the basic scheme utilized.
A further possibility to extend the one space dimensional Euler scheme (L. ka)
is considered in the following example.
EXAMPLE 4.8. (example (2.6) in [1]). Let the boundary conditions be of the form
v _(t+At) = vu,C(t) +0.5'A 8- [(v

(t)+vu+l,c(t))'(v (t)*vu.c(t)] +

uLg utl,r+l B+l
(4.11a)
+ 0,52 b t)+ t))- + t
542y [(vu+1,C*l( ) vu,§+1( )) (vu+l,C(t) vu,c( NI,
P2 O,=l,..,,-1+l, ~® < [ <o
To simplify the computations we shall cofisider the case whete Axa = Ayb. The

boundary-function associated with (L.11a) 1is given by
(4.11b) R.(z,k,n) = l-z—1~k a'(te;n—l)
' o R x
and by equating to zero we get that its z-solutions satisfy
(k.11c) |z(K=eiE,n)|2 = [l-Axa+Axa-cos(E+h)]2 + [Axa-sin(5+n)]2 <
€ (ll-Axa] +|Axa|) , O §'l£|,,n| £,

Then, upon imposing the CFL condition




we sce that the exrlicit and hence (by Rermark 3.3) solvable boundary conditions

[h.178) artist the von Younann condition.  2r (L, 1le) snd (L.114) we have

ro=1 W)|2 = (1-)_a+)_a-cosn) + (A a-sinn)® < ({1-x_a] + | [)2 = ]
’ x x x x x& =1,

(. lle)
0 < |n] ¢m,

and hence condition (4.8) is fulfilled. Consistency implies that
z{k=1,n=9) = 1 (see (4.1le)) and together with (L.,lle) we finally get
(2=e®k=1,n)| >0, 0 < |o| s %, 0¢|n] ¢,

A(z=e"",n) 2 |R

0]

i.e., Assumption V holds. Therefore we may apply Theorem 3.3 concluding that
if the CFL condition (4.11d) is fulfilledgl) then the outflow boundary conditions
(4.11a) in conjunction with any dissipative basic scheme constitute together a
stable approximation.

In the manner of the last two examples, one may consider various two space
dimensional boundary treatments which extend the corresponding one space

dimensional ones. We choose to consider an example which is based on extrapolation.

EXAMPLE 4.9. (example (2.4) in [1]). Let the boundary conditions be determined

(1) A further restriction on the time step At may arise from the stability
requirement made in Assumption III (see Remark U.1).
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by cblique extrapolation along the characteristic plane (see Example L.l), i.e.,

m

(L.12a" v ! ‘=§ Ay(a)dtt
12a Ib‘ﬁ\t*At) - .3)( 1) vu*J,C*J

Py

[t-(3-1)8t], 1=0,-1,... ,-r+l,-mcg<em,

The boundary-function associated with {(L4.12a) is given by

m
. om
(h,125) Qgiz,z,n) =1 - :E::(x;)(-l)3+lz-‘jxjeiJE z (1-z-l<e1n) .
J=1

and by equating to zero we get that its z-solutions satisfy
. i ig 1
(L.12¢) | z(xk=e E,n)l = |e £e nI =1, 0z¢ ‘E|’ lnl £m.

Thus, the explicit and hence (by Remark 3.3) solvable becundary conditions (L.12a)
are of non-dissipative type so they sati«ty the von Neumann condition. In
addition we have
in®
Ry(z=l,c=l,n) = (1-e'") #0 ,0 < |n| &,
i.e., condition (4.8) is fulfilled. Thus to assure stability via Theorem 3.3, it
then remains to verify Assumption V. Since by (4.12b) we have

_ i 1@ in D2
Ro(z—e ,KSI,H)'g.n s (l-e e )|¢Fn = 0,

the assumption is reduced in this case to the requirement
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{L.124) 8(z=ei® n) = [P(z=ew,m=1,n)| >0,0c< | £€%, 0<]|n] ¢,

P(z,x,n) denoting as usual the corresponding characteristic function associated
\ with the basic scheme.
Applying Theorem 3.3 we conclude that the extrapolatory outflow boundary
canditions (4.12a), when complementing any dissipative basic scheme whose
characteristic function P(z,c,n) satisfies P(z-eiw,nal.n) # 0, 0<|p|<r,

O\]nlkzl, constitute a stable approximation.

\
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